A nonstandard free boundary problem arising in the shape optimization of thin torsion rods

Abstract : We study a 2d-variational problem, in which the cost functional is an integral depending on the gradient through a convex but not strictly convex integrand, and the admissible functions have zero gradient on the complement of a given domain D. We are interested in establishing whether solutions exist whose gradient "avoids" the region of non-strict convexity. Actually, the answer to this question is related to establishing whether homogenization phenomena occur in optimal thin torsion rods. We provide some existence results for different geometries of D, and we study the nonstandard free boundary problem with a gradient obstacle, which is obtained through the optimality conditions.
Type de document :
Article dans une revue
Interfaces Free Boundaries, 2013, 15 (1), pp.95-119. 〈10.4171/IFB/296〉
Liste complète des métadonnées

https://hal-univ-tln.archives-ouvertes.fr/hal-00993897
Contributeur : Jean-Jacques Alibert <>
Soumis le : mardi 20 mai 2014 - 17:08:38
Dernière modification le : mardi 19 juin 2018 - 15:50:01

Identifiants

Collections

Citation

Jean-Jacques Alibert, Guy Bouchitté, Ilaria Fragalà, Ilaria Lucardesi. A nonstandard free boundary problem arising in the shape optimization of thin torsion rods. Interfaces Free Boundaries, 2013, 15 (1), pp.95-119. 〈10.4171/IFB/296〉. 〈hal-00993897〉

Partager

Métriques

Consultations de la notice

141