Penalization method for a nonlinear Neumann PDE via weak solutions of reflected SDEs

Abstract : In this paper we prove an approximation result for the viscosity solution of a system of semi-linear partial differential equations with continuous coefficients and nonlinear Neumann boundary condition. The approximation we use is based on a penalization method and our approach is probabilistic. We prove the weak uniqueness of the solution for the reflected stochastic differential equation and we approximate it (in law) by a sequence of solutions of stochastic differential equations with penalized terms. Using then a suitable generalized backward stochastic differential equation and the uniqueness of the reflected stochastic differential equation, we prove the existence of a continuous function, given by a probabilistic representation, which is a viscosity solution of the considered partial differential equation. In addition, this solution is approximated by solutions of penalized partial differential equations
Type de document :
Article dans une revue
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2013, 18 (102), pp.1-19. 〈10.1214/EJP.v18-2467〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal-univ-tln.archives-ouvertes.fr/hal-00998298
Contributeur : Khaled Bahlali <>
Soumis le : dimanche 30 août 2015 - 13:06:48
Dernière modification le : jeudi 15 mars 2018 - 16:56:04
Document(s) archivé(s) le : mardi 11 avril 2017 - 02:22:15

Fichier

BMZ_EJP_paru.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

K. Bahlali, Lucian Maticiuc, Adrian Zalinescu. Penalization method for a nonlinear Neumann PDE via weak solutions of reflected SDEs. Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2013, 18 (102), pp.1-19. 〈10.1214/EJP.v18-2467〉. 〈hal-00998298〉

Partager

Métriques

Consultations de la notice

146

Téléchargements de fichiers

129