Differential Geometry and Mechanics Applications to Chaotic Dynamical Systems

Abstract : The aim of this article is to highlight the interest to apply Differential Geometry and Mechanics concepts to chaotic dynamical systems study. Thus, the local metric properties of curvature and torsion will directly provide the analytical expression of the slow manifold equation of slow-fast autonomous dynamical systems starting from kinematics variables velocity, acceleration and over-acceleration or jerk. The attractivity of the slow manifold will be characterized thanks to a criterion proposed by Henri Poincaré. Moreover, the specific use of acceleration will make it possible on the one hand to define slow and fast domains of the phase space and on the other hand, to provide an analytical equation of the slow manifold towards which all the trajectories converge. The attractive slow manifold constitutes a part of these dynamical systems attractor. So, in order to propose a description of the geometrical structure of attractor, a new manifold called singular manifold will be introduced. Various applications of this new approach to the models of Van der Pol, cubic-Chua, Lorenz, and Volterra-Gause are proposed.
Type de document :
Article dans une revue
International Journal of Bifurcation and Chaos, World Scientific Publishing, 2006, 16 (4), pp.887-910. 〈10.1142/S0218127406015192〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal-univ-tln.archives-ouvertes.fr/hal-01054308
Contributeur : Jean-Marc Ginoux <>
Soumis le : mercredi 6 août 2014 - 22:16:24
Dernière modification le : lundi 21 mars 2016 - 17:36:34
Document(s) archivé(s) le : mercredi 26 novembre 2014 - 00:45:19

Fichiers

Differential.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jean-Marc Ginoux, Bruno Rossetto. Differential Geometry and Mechanics Applications to Chaotic Dynamical Systems. International Journal of Bifurcation and Chaos, World Scientific Publishing, 2006, 16 (4), pp.887-910. 〈10.1142/S0218127406015192〉. 〈hal-01054308〉

Partager

Métriques

Consultations de la notice

119

Téléchargements de fichiers

148