Flow curvature manifolds for shaping chaotic attractors: Rossler-like systems

Abstract : Poincaré recognized that phase portraits are mainly structured around fixed points. Nevertheless, the knowledge of fixed points and their properties is not sufficient to determine the whole structure of chaotic attractors. In order to understand how chaotic attractors are shaped by singular sets of the differential equations governing the dynamics, flow curvature manifolds are computed. We show that the time dependent components of such manifolds structure Rossler-like chaotic attractors and may explain some limitation in the development of chaotic regimes.
Type de document :
Article dans une revue
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2009, 42 (28), pp.285101. 〈10.1088/1751-8113/42/28/285101〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal-univ-tln.archives-ouvertes.fr/hal-01056202
Contributeur : Jean-Marc Ginoux <>
Soumis le : lundi 18 août 2014 - 09:31:32
Dernière modification le : mardi 11 septembre 2018 - 16:12:02
Document(s) archivé(s) le : jeudi 27 novembre 2014 - 01:57:21

Fichiers

GinouxLetellier.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jean-Marc Ginoux, Christophe Letellier. Flow curvature manifolds for shaping chaotic attractors: Rossler-like systems. Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2009, 42 (28), pp.285101. 〈10.1088/1751-8113/42/28/285101〉. 〈hal-01056202〉

Partager

Métriques

Consultations de la notice

195

Téléchargements de fichiers

270