Sensitivity analysis of 1-d steady forced scalar conservation laws

Abstract : We analyze 1 − d forced steady state scalar conservation laws. We first show the existence and uniqueness of entropy solutions as limits as t → ∞ of the corresponding solutions of the scalar evolutionary hyperbolic conservation law. We then linearize the steady-state equation with respect to perturbations of the forcing term. This leads to a linear first order differential equation with, possibly, discontinuous coefficients. We show the existence and uniqueness of solutions in the context of duality solutions. We also show that this system corresponds to the steady state version of the linearized evolutionary hyperbolic conservation law. This analysis leads us to the study of the sensitivity of the shock location with respect to variations of the forcing term, an issue that is relevant in applications to optimal control and parameter identification problems.
Type de document :
Article dans une revue
Journal of Differential Equations, Elsevier, 2013, 254 (9), pp.3817-3834. 〈10.1016/j.jde.2013.01.041〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal-univ-tln.archives-ouvertes.fr/hal-01292865
Contributeur : Cécile Ferran <>
Soumis le : lundi 27 juin 2016 - 16:29:11
Dernière modification le : mardi 19 juin 2018 - 15:50:01

Fichier

Ersoy_Feireisl_Zuazua_last_281...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Mehmet Ersoy, Eduard Feireisl, Enrique Zuazua. Sensitivity analysis of 1-d steady forced scalar conservation laws. Journal of Differential Equations, Elsevier, 2013, 254 (9), pp.3817-3834. 〈10.1016/j.jde.2013.01.041〉. 〈hal-01292865〉

Partager

Métriques

Consultations de la notice

211

Téléchargements de fichiers

169