Sensitivity analysis of 1-d steady forced scalar conservation laws

Abstract : We analyze 1 − d forced steady state scalar conservation laws. We first show the existence and uniqueness of entropy solutions as limits as t → ∞ of the corresponding solutions of the scalar evolutionary hyperbolic conservation law. We then linearize the steady-state equation with respect to perturbations of the forcing term. This leads to a linear first order differential equation with, possibly, discontinuous coefficients. We show the existence and uniqueness of solutions in the context of duality solutions. We also show that this system corresponds to the steady state version of the linearized evolutionary hyperbolic conservation law. This analysis leads us to the study of the sensitivity of the shock location with respect to variations of the forcing term, an issue that is relevant in applications to optimal control and parameter identification problems.
Document type :
Journal articles
Complete list of metadatas

Cited literature [14 references]  Display  Hide  Download

https://hal-univ-tln.archives-ouvertes.fr/hal-01292865
Contributor : Cécile Ferran <>
Submitted on : Monday, June 27, 2016 - 4:29:11 PM
Last modification on : Tuesday, June 19, 2018 - 3:50:01 PM

File

Ersoy_Feireisl_Zuazua_last_281...
Files produced by the author(s)

Identifiers

Collections

Citation

Mehmet Ersoy, Eduard Feireisl, Enrique Zuazua. Sensitivity analysis of 1-d steady forced scalar conservation laws. Journal of Differential Equations, Elsevier, 2013, 254 (9), pp.3817-3834. ⟨10.1016/j.jde.2013.01.041⟩. ⟨hal-01292865⟩

Share

Metrics

Record views

263

Files downloads

305