Structural Optimization of Thin Elastic Plates: The Three Dimensional Approach

Abstract : The natural way to find the most compliant design of an elastic plate is to consider the three-dimensional elastic structures which minimize the work of the loading term, and pass to the limit when the thickness of the design region tends to zero. In this paper, we study the asymptotics of such a compliance problem, imposing that the volume fraction remains fixed. No additional topological constraint is assumed on the admissible configurations. We determine the limit problem in different equivalent formulations, and we provide a system of necessary and sufficient optimality conditions. These results were announced in Bouchitté et al. (C. R. Acad. Sci. Paris, Ser. I. 345:713–718, 2007). Furthermore, we investigate the vanishing volume fraction limit, which turns out to be consistent with the results in Bouchitté and Fragalà (Arch. Rat. Mech. Anal. 184:257–284, 2007; SIAM J. Control Optim. 46:1664–1682, 2007). Finally, some explicit computation of optimal plates are given.
Type de document :
Article dans une revue
Archive for Rational Mechanics and Analysis, Springer Verlag, 2011, 202 (3), pp.829-874. 〈10.1007/s00205-011-0435-x〉
Liste complète des métadonnées

https://hal-univ-tln.archives-ouvertes.fr/hal-01294103
Contributeur : Guy Bouchitte <>
Soumis le : dimanche 27 mars 2016 - 11:39:08
Dernière modification le : mardi 19 juin 2018 - 15:50:01

Lien texte intégral

Identifiants

Collections

Citation

Guy Bouchitté, Ilaria Fragalà, Pierre Seppecher. Structural Optimization of Thin Elastic Plates: The Three Dimensional Approach. Archive for Rational Mechanics and Analysis, Springer Verlag, 2011, 202 (3), pp.829-874. 〈10.1007/s00205-011-0435-x〉. 〈hal-01294103〉

Partager

Métriques

Consultations de la notice

239