Biogeochemical fluxes and fate of diazotroph-derived nitrogen in the food web after a phosphate enrichment : modeling of the VAHINE mesocosms experiment - Université de Toulon Accéder directement au contenu
Article Dans Une Revue Biogeosciences Année : 2016

Biogeochemical fluxes and fate of diazotroph-derived nitrogen in the food web after a phosphate enrichment : modeling of the VAHINE mesocosms experiment

Audrey Gimenez
  • Fonction : Auteur
  • PersonId : 992911
Melika Baklouti
Sophie Bonnet
Thierry Moutin

Résumé

The VAHINE mesocosm experiment in the oligotrophic waters of the Nouméa lagoon (New Caledonia), where high N2 fixation rates and abundant diazotroph organisms were observed, aimed to assess the role of the nitrogen input through N2 fixation in carbon production and export and to study the fate of diazotroph-derived nitrogen (DDN) throughout the planktonic food web. A 1-D vertical biogeochemical mechanistic model was used in addition to the in situ experiment to enrich our understanding of the dynamics of the planktonic ecosystem and the main biogeochemical carbon (C), nitrogen (N) and phosphate (P) fluxes. The mesocosms were intentionally enriched with  ∼  0.8 µmol L−1 of inorganic P to trigger the development of diazotrophs and amplify biogeochemical fluxes. Two simulations were run, one with and the other without the phosphate enrichment. In the P-enriched simulation, N2 fixation, primary production (PP) and C export increased by 201, 208 and 87 %, respectively, consistent with the trends observed in the mesocosms (+124, +141 and +261 % for N2 fixation, PP and C export, respectively). In total, 5–10 days were necessary to obtain an increase in primary and export productions after the dissolved inorganic phosphate (DIP) enrichment, thereby suggesting that classical methods (short-term microcosms experiments) used to quantify nutrient limitations of primary production may not be relevant. The model enabled us to monitor the fate of fixed N2 by providing the proportion of DDN in each compartment (inorganic and organic) of the model over time. At the end of the simulation (25 days), 43 % of the DDN was found in the non-diazotroph organisms, 33 % in diazotrophs, 16 % in the dissolved organic nitrogen pool, 3 % in the particulate detrital organic pool and 5 % in traps, indicating that N2 fixation was of benefit to non-diazotrophic organisms and contributed to C export.
Fichier principal
Vignette du fichier
Gimenez_et_al_BG_2016.pdf (1.7 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01393465 , version 1 (26-03-2019)

Identifiants

Citer

Audrey Gimenez, Melika Baklouti, Sophie Bonnet, Thierry Moutin. Biogeochemical fluxes and fate of diazotroph-derived nitrogen in the food web after a phosphate enrichment : modeling of the VAHINE mesocosms experiment. Biogeosciences, 2016, 13 (17), pp.5103-5120. ⟨10.5194/bg-13-5103-2016⟩. ⟨hal-01393465⟩
170 Consultations
104 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More