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Abstract

In the framework of Γ-convergence and periodic homogenization of highly contrasted materials, we study
cylindrical structures made of one material and voids. Interest in high contrast homogenization is growing
rapidly but assumptions are generally made in order to remain in the framework of classical elasticity. On the
contrary, we obtain homogenized energies taking into account second gradient (i.e. strain gradient) effects. We
first show that we can reduce the study of the considered structures to discrete systems corresponding to frame
lattices. Our study of such lattices differs from the literature in the fact that we take into account the different
orders of magnitude of the extensional and flexural stiffnesses. This allows us to consider structures which would
have been floppy when considering only extensional stiffness and completely rigid when considering flexural
stiffnesses of the same order of magnitude than the extensional ones. To our knowledge, this paper provides the
first rigorous homogenization result in continuum mechanics with a complete second gradient limit energy.

1 Introduction

In [22] it has been proved that highly contrasted heterogeneous elastic materials may lead, through an homoge-
nization process, to materials with very new properties. In particular the order of differentiation of the equilibrium
equations may be much higher for the homogenized material than they were for the heterogeneous one. However
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Figure 1: A cylindrical 3D elastic structure based on a thickened periodic planar graph. The basis of the cylinder
is a thickened periodic graph Ωε with a global size L, a period size ℓ, a thickness of edges e which are three lengths
with different orders of magnitude.

very few explicit examples have been given in which such a phenomenon appears. In [44], [11], [19] the homogenized
material becomes a second gradient one : the elastic energy depends on the second gradient of the displacement
instead of the first one only. However all these results fall under the framework of couple stress theory, [51], [52],
[38], [39] : the dependence with respect to the second gradient of the displacement is limited to dependence on the
gradient of the skew part of the gradient of the displacement only. To our knowledge complete second gradient
media have been obtained, up to now, only through homogenization of discrete systems based on pantographic
structures [6], [7], [49].

Second gradient materials are, among other generalized continuum models widely used [28], [27], [36], [29],
. . . Their very rich behavior allows for instance to regularize and thus to study precisely the parts of materials where
the deformation tends to concentrate, [53], [30] (inter-phases, [40], [20], [32], [48], porous media, [47], fractures,
[2], [3], damage and plasticity, [54], [45]). However the second gradient properties are scarcely measured directly,
[8], [9], [33] nor rigorously interpreted from a microscopic point of view. Mechanicians have no tool for conceiving
second gradient materials with chosen properties.

The aim of this paper is to provide such a tool. It is is not question here to solve all highly contrasted periodic
homogenization problems but to describe a set of situations sufficiently large for making clear how appear second
gradient effects through the homogenization process.

It is important to remark that second gradient properties are generally obtained in the literature as corrections to
the homogenized model : they do not appear in the limit energy but as a next term in an asymptotic development
[15], [5] [50] with respect to the size of the heterogeneities. There is an essential difference of nature between
second gradient limit energies and second gradient terms in an asymptotic development : in the first case the
model contains a finite intrinsic length while in the second case the intrinsic lengths are infinitely small. Another
fact enlightens the difference between both approaches : second gradient asymptotic developments can be obtained
even when homogenizing conduction problems [5] while it has been proved in [21] and [22] that second gradient
limit energies were possible for elasticity homogenization problems but unattainable when considering conduction
problems. Asymptotic developments are difficult to interpret and applying them to real problems leads to many
questions. For instance the sign of the second gradient terms in these developments may change and lead to ill-posed
equilibrium problems. For instance still, it seems difficult to justify the fact that the maximum principle applies in
heterogeneous conduction problems but would not apply when replacing them by their homogenized second gradient
development. All these problems cannot arise when applying our results. Our limit energies, owing to standard
properties of Γ-convergence, are necessarily positive lower semi-continuous quadratic forms.

We consider structures made of a periodic arrangement of welded thin walls (see for instance figure 1) : they
are cylinders (see Figure 1a) the basis of which is a thickened periodic planar graph (see Figure 1b).

We study, in the framework of Γ-convergence, the homogenization of these structures and rigorously determine
the second gradient effects. To that aim we make some modeling assumptions which, of course, can be questioned
when applied to the real structure of figure 1:

• First we assume that the structure is made of a homogeneous isotropic linear elastic material. We thus
implicitly forbid the possibility of any micro buckling effect.
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• We also consider that the structure is solicited in the plane of the graph and assume that we are in the
conditions of plane strain elasticity. This assumption, valid only when the height of the structure is large
enough, allows us to reduce the problem to a bi-dimensional one : a linear elastic problem set in a thickened
periodic planar graph; more precisely, in the intersection of this thickened graph and a bounded domain
Ω ⊂ R

2.

• As our goal is to determine the effective properties of the material, we have to suppose that the size ℓ of the
period of the graph is small compared to the characteristic size L of the domain Ω. This is the standard
asymptotic homogenization assumption.

ǫ = ℓ/L << 1

• We consider that the thickness e of the walls the structure is made of (i.e. the thickness of the graph) is small
compared with ℓ. Hence the 2D elastic problem we consider contains two small dimensionless parameters
which we let tend to zero :

δ = e/ℓ << 1

This assumption is essential : otherwise the standard homogenization results would be valid and the effective
properties of the material would be those of a classical (may be non isotropic) elastic material. This assumption
will also have a practical effect on our mathematical arguments : as it implies that the edges are slender
rectangles, we can, using the theory of slender elastic structures, reduce our problem to the study of a discrete
system.

• The two limits ǫ → 0 and δ → 0 do not commute and we have to specify the way they simultaneously go to
zero : we assume that

δ = βǫ

with β > 0 fixed. Indeed, this case is critical : the cases δ = ǫα with α > 1 or α < 1 can be deduced from our
results by letting in a further step β tend to zero or to infinity.

• Finally we have to specify the order of magnitude of the rigidity of the material our structure is made of.
We emphasize that speaking of the order of magnitude of the stiffness of the material takes sense only if we
compare it to some force. In other words, making an assumption over the elastic rigidity is equivalent to
making an assumption over the order of magnitude of the applied external forces. As the total volume of
our structure tends to zero with δ, it is clear that we need a strong rigidity of the material if we desire to
resist to forces of order one. Different assumptions can be made which correspond to different experiments.
This is not surprising : the reader accustomed for instance to the 3D-2D or 3D-1D reduction of models for
plates or beams, knows that changing the assumptions upon the order of magnitude of the elasticity stiffness
of the material changes drastically the limit model. If the structure cannot resist to some applied forces (like
a membrane cannot resist to transverse forces), it may resist to them after a suitable scaling of the material
properties (like the membrane model is replaced by the Kirchhoff-Love plate model). Simultaneously some
mobility may disappear (like the Kirchhoff-Love plate becomes inextensible).

In this paper we are interested in the case where the Lamé coefficients (µ, λ) of the material tend to infinity
like δ−1ǫ−2 :

µ =
µ0

βǫ3
, λ =

λ0
βǫ3

(1)

• For sake of simplicity we assume free boundary conditions along the whole boundary of Ω. The discussion
about the different boundary conditions which can be assumed and the way they pass to the limit would make
this paper too long. As usual when dealing with Neumann-type boundary conditions, we have to assume that
the external forces applied to the structure are balanced and we ensure uniqueness of the equilibrium solution
by imposing zero mean rigid motion.

The paper is organized as follows. In Section 2, we first describe precisely the geometry we are interested in by
introducing in a sparse way the graphs on which our 3D structures are based. Assuming a plane strain state we
state the elastic problem in a 2D domain which corresponds to a thickened graph.

Several studies deal with this problem (see for instance [13], [14], [23] [43]) but the assumptions which are made
in these papers are stronger than ours (either limiting the energy to conduction problems or fixing a thickness for
the walls of the same order of magnitude as the size of the periodic cell or limiting the stiffness of material the
structure is made of to a too small order of magnitude) and their results are thus limited to classical (first gradient)
homogenized energy.
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In Section 3, we prove that our 2D elastic problem has the same Γ-limit as an equivalent discrete problem set
on the nodes of the graph. Both extensional and flexural stiffnesses must be taken into account even if the flexural
rigidity is much lower than the extensional one. This part is rather technical and the sketches of the proofs (which
are more or less standard) are postponed to the Appendix.

In Section 4 we attack the problem of finding the Γ-limit of the discrete energy. We study the problem from
the variational point of view adapting to our case the tools of Γ-convergence, [25], [17] and double-scale limit, [41],
[4] which have shown their efficiency for treating many different problems of homogenization. The topology we
use is rather weak but it is sufficient to ensure at least, that the equilibrium of the structure under the action
of forces applied at the nodes of the structure will be well described by the equilibrium of the limit model. This
discrete homogenization problem has been studied in [34], [35], [46] and in different contexts in [37], [18]. Again
only first gradient limit models have been obtained. The point is that, in all these papers, the order of magnitude
of the different types of interaction are supposed not to interfere with the homogenization asymptotic process (see
Remark 7.5 of Ref. [34], Remark (2.7) of Ref. [37] or Ref. [18]) while here the ratio between flexural and extensional
interactions is comparable to the homogenizing small parameter.

In this paper we do not exhaust all interesting questions about our structures : it has been shown in [49] that the
types of actions (external forces, external distributions, boundary distributions,. . . ) which can be applied to second
gradient materials were much richer than the boundary conditions and external forces considered here. However
the case we study is sufficient to enlighten the way second gradient effects can arise through the homogenization
procedure. In section 5 we give an example where the limit energy is a complete second gradient one. By “complete”
we mean that it does not reduce to a couple-stress model where the energy involves only the gradient of the skew
part of the gradient of the displacement. To our knowledge, this is the first rigorous homogenization result with a
complete second gradient limit energy.

2 Initial problem, description of the geometry

2.1 The graph

The geometry we consider is based on a periodic planar graph. We adopt a description close to the one used in
[31]. Such a graph is determined by

• a prototype cell Y containing a finite number K of nodes the position of which is denoted ys, s ∈ {1, . . . ,K};

• two independent periodicity vectors t1, t2. As the graph will be re-scaled, we can assume without loss of
generality that t1 × t2 = 1 (i.e. the area |Y| = 1). Introducing, for I = (i, j) ∈ N

2, the points yεI,s :=
ε(ys + it1 + jt2), the set of nodes of the graph is

{

yεI,s : I ∈ N
2, s ∈ {1, . . . ,K}

}

We use yεI := 1
K

∑K
s=1 y

ε
I,s as a reference point for the cell I;

• five K × K matrices ap taking value in R
+ defining the edges of the graph : an edge links nodes yI,s and

yI+p,s′ as soon as ap,s,s′ > 0. Here p belongs to the set1

P := {(0, 0), (1, 0), (0, 1), (1, 1), (1,−1)}.

We denote p := p1t1 + p2t2 ∈ {0, t1, t2, t1 + t2, t1 − t2} the corresponding vector so that yεI+p,s = yεI,s + εp.
We introduce the set of multi-indices corresponding to all edges :

A := {(p, s, s′) : p ∈ P , 1 ≤ s ≤ K, 1 ≤ s′ ≤ K, ap,s,s′ > 0}.

For any (p, s, s′) ∈ A we introduce the rescaled length and direction of the edge by setting

ℓp,s,s′ := ε−1‖yεI+p,s′ − yεI,s‖, and τp,s,s′ :=
yεI+p,s′ − yεI,s

εℓp,s,s′
.

1Note that, owing to periodicity, only half of the neighbors of a cell have been considered. It is also important to notice that there
is no loss of generality (as soon as we assume that the range of interactions is finite) in assuming that a cell is interacting only with its
closest neighbors. Indeed we can always choose a prototype cell large enough for this assumption to become true.
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• a bounded convex domain Ω in R
2. We assume that Ω has measure 1 (choice of the unit length) and so that

L = 1. We denote Iε be the set of cells which lie sufficiently inside the domain :

Iε :=
{

I; yεI ∈ Ω and d(yεI , ∂Ω) >
√
ε
}

(where d stands for the Euclidian distance), G̊ε the set of nodes of these cells and Gε the union of the edges
which link them

G̊ε :=
⋃

I∈Iε

K
⋃

s=1

{yεI,s}, Gε :=
⋃

I∈Iε

⋃

(p,s,s′)∈A

[yεI,s, y
ε
I+p,s′ ].

The number Nε of such cells is equivalent to ε−2 and we will denote in the sequel the mean value of any
quantity ϕ defined on Iε by

∑

I

ϕI :=
1

Nε

∑

I∈Iε

ϕI ∼ ε2
∑

I∈Iε

ϕI

The planar elastic problem will be set in the thickened graph:

Ωε :=
{

x ∈ Ω; d(x,Gε) < βε2
}

, (2)

where the thickened nodes Bε
I,s

Bε
I,s := {x; d(x, yεI,s) < βε2}

play an essential role.

Restrictive assumptions : Not all interaction matrices are admissible :

• There is no crossing or overlapping of different edges : for any (p, s, s′) and (p̃, s̃, s̃′) in A,

[yεI,s, y
ε
I+p,s′ ] ∩ [yε

Ĩ,s̃
, yε

Ĩ+p̃,s̃′
] 6⊂ {yεI,s, yεI+p,s′} ⇒ (Ĩ , s̃, p̃) = (I, s, p).

This assumption results from the cylindrical shapes we are studying but is not fundamental. One could design
multilayered structures, allowing crossing of interactions. The reduction to a discrete problem would then
have to be adapted to this case.

• We are not interested by lattices which are made of several disconnected lattices. So we assume that the
edges connect all the nodes of the structures. More precisely we assume that, for any p ∈ P and any
(s, s′) ∈ {1, . . . ,K}2, there exist a finite path in the graph which joins the node yεI,s to the node yεI+p,s′ that
is a finite sequence (s1, . . . , sr+1) in {1, . . . ,K}, (p1, . . . , pr) in P , (ǫ1, . . . , ǫr) in {−1, 1} such that s1 = s,
sr+1 = s′,

∑r
i=1 ǫipi = p,

ǫi > 0 ⇒ (pi, si, si+1) ∈ A and ǫi < 0 ⇒ (pi, si+1, si) ∈ A.

Note that, for nodes yεI,s and yεI+p,s′ lying sufficiently inside Ω, the joining path is independent of I but that
this path may have to be modified for nodes lying close to the boundary. We assume that such a path can
always be chosen in a finite set of paths.

As we will see in Lemma 4 this assumption implies the strong-2-connectedness in the sense of [14].

Even if it seems clear when considering Figures 2 and 3, it is not so easy to check if a structure is connected.
This has been studied in [10] where algorithms for this checking are provided.

Some examples of non connected graphs are given in figure 2 while examples of admissible graphs are given in
figures 1 and 3.
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εt2

εt1

εt2

εt1

Figure 2: Non connected structures for which relative compactness is not ensured.

εt2

εt1

εt2

εt1

Figure 3: Admissible structures.

2.2 The 2D elastic problem

As we have chosen L = 1, our assumptions resume in

ℓ = ε, e = βε2, µ =
µ0

βǫ3
, λ =

λ0
βǫ3

.

The elastic energy Eε is defined, for any displacement field u ∈ L2(Ωε,R2) with zero mean rigid motion, by

Eε(u) :=







1

βε3

∫

Ωε

(

µ0‖e(u)‖2 +
λ0
2
tr(e(u))2

)

dx if u ∈ H1(Ωε,R2),

+∞ otherwise.
(3)

εt2

εt1

Figure 4: Another admissible structure : the planar graph corresponding to Figure 1.
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Here e(u) denotes the symmetric part of the gradient of u (e(u) = (∇u + ∇tu)/2 is the linearized strain tensor),
tr(e(u)) denotes the trace of the matrix e(u). To Lamé coefficients (which satisfy µ0 > 0 and λ0 + µ0 > 0), we
associate Young modulus

Y =
Y0
βε3

where Y0 :=
4µ0(µ0 + λ0)

2µ0 + λ0

and Poisson ratio

ν :=
λ

2µ+ λ
= ν0 :=

λ0
2µ0 + λ0

.

The reader may have noticed that the values of the positive coefficients ap,s,s′ > 0 of the interaction matrices
were, up to now, irrelevant (as soon as they remain positive). We now fix them by setting

ap,s,s′ =
2Y0
ℓp,s,s′

(4)

2.3 Convergence

In order to study the homogenization of the considered structures, we need to specify the way we pass to the limit
of a sequence of fields (uε) with finite energy Eε(u

ε) < +∞. Indeed each term is defined on a different domain Ωε.
To that aim, we first introduce the operator u → ū, which to any field u ∈ L2(Ωε; R

2) associates the family ū of
mean values defined for I ∈ Iε and s ∈ {1, . . . ,K} by

ūI,s := −
∫

Bε
I,s

u(x) dx :=
1

|Bε
I,s|

∫

Bε
I,s

u(x) dx. (5)

Note that this operator which maps L2(Ωε; R
2) onto the set Vε of functions defined on Iε × {1, . . . ,K} actually

depends on ε, even if the notation does not recall it.
Then we define the convergence of a sequence of families of vectors (Zε

I )I∈Iε : We say that (Zε) converges to
the measurable function z, and we write Zε⇀z, when the following weak* convergence of measures holds true :

∑

I

Zε
I δyε

I

∗
⇀ z(x) dx (6)

where δy stands for the Dirac measure at point y.
Finally we say that the sequence of functions (uε) (where uε ∈ L2(Ωε; R

2)) converges to u when, for all
s ∈ {1, . . . ,K}, (ūε)I,s⇀u. As no confusion can arise, we simply write uε⇀u.

Remark 1. The convergence (6) means that, for all ϕ ∈ C0(Ω),

∑

I

Zε
Iϕ(y

ε
I) →

∫

Ω

z(x)ϕ(x) dx (7)

When applying this notion to sequences (Zε) such that
∑

I
‖Zε

I‖2 is bounded, we are thus assured (see [24] Lemma

10.1) that a subsequence converges to some z ∈ L2(Ω). In view of (7), we note that we can replace in (6) the Dirac
measure δyε

I
by δyε

I,s
or even δyε

I+p,s
. Indeed ϕ(yεI+p, s

′)− ϕ(yεI,s, s) = o(1).

Remark 2. The convergence of measures (6) when holding for any s ∈ {1, . . . ,K} is closely related to the double-
scale convergence as defined by [41] or [4]. Here our discrete variable s plays the role of the fast variable. In that
case, for any convex lower semi continuous function Φ we have

lim inf
ε

∑

I

1

K

K
∑

s=1

Φ(Zε
I,s) ≥

∫

Ω

Φ(z(x)) dx. (8)

(see [12] Lemma 3.1).
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Remark 3. The choice of this convergence allows for the direct application of our homogenization result to the
computation of the equilibrium when external forces are applied at the “nodes” of the structure. More precisely to
forces fields f ε of the type

f ε
s (x) =

1

Nεπβ2ε4

∑

I∈I

K
∑

s=1

f(yI,s)1Bε
I,s

(x)

where f is a continuous field. Indeed the external potential due to such forces corresponds to a continuous perturba-
tion of the energy with respect to the considered convergence. The reader can refer to [25] or [17] for a description
of properties of Γ-convergence.

3 Reduction to a discrete problem

We prove in this section that the considered structure can be studied as a discrete one. To any function (U, θ)
defined on the nodes of the graph (U being vector valued while θ is scalar), we associate the energies

Eε(U) :=
∑

(I,p,s,s′)∈Iε×A

aps,s′

2

(

UI+p,s′ − UI,s

ε
· τp,s,s′

)2

(9)

Fε(U, θ) := ε2
∑

(I,p,s,s′)∈Iε×A

aps,s′β
2

6

(

3
(

θI+p,s′ + θI,s −
2

ℓp,s,s′

UI+p,s′ − UI,s

ε
· τ⊥p,s,s′)

)2
+ (θI+p,s′ − θI,s)

2
)

. (10)

The sum Eε +Fε corresponds to the elastic energy of a system of nodes linked by extensional and flexural bars.
This section is devoted to the proof of the following theorem which states that the Γ-limit of the initial sequence of
2D elastic energies is identical to the limit of the sequence of these discrete energies.

Theorem 1. The sequences (Eε) and (Eε + Fε) share the same Γ-limit E . Indeed, for any measurable function u,
we have

(i) inf
uε

{lim inf
ε→0

Eε(u
ε) : uε⇀u} ≥ inf

Uε,θε
{lim inf

ε→0
(Eε(U

ε) + Fε(U
ε, θε)); Uε⇀u}

(ii) inf
uε

{lim sup
ε→0

Eε(u
ε) : uε⇀u} ≤ inf

Uε,θε
{lim sup

ε→0
(Eε(U

ε) + Fε(U
ε, θε))); Uε⇀u}

In order to prove this result, we first recall some results concerning the elastic behavior of a thin rectangle which
are well known in an asymptotic form but that we need here to state more precisely in order to be able to apply
them to the whole structure. Their proofs are postponed to the Appendix.

3.1 Estimations for an elastic rectangle

We use the orthonormal basis (e1, e2) in R
2 and consider the rectangle ω := [−ℓ/2, ℓ/2]× [−e,+e] (with e < ℓ/4).

To any function u ∈ H1(ω) we associate

U(x1) :=
1

2e

∫ e

−e

u(x1, x2) dx2, θ(x1) := − 3

2e3

∫ e

−e

u1(x1, x2)x2 dx2,

v(x1) :=
3

4e3

∫ e

−e

(u2(x1, x2)− U2(x1))(e
2 − x22) dx2.

and

W :=
1

πe2

∫

B(0,e)

u(x1, x2) dx1dx2, φ :=
1

πe2

∫

B(0,e)

∂1u2 − ∂2u1
2

(x1, x2) dx1dx2.

Lemma 1. There exists a constant C independent of e such that, for any u ∈ H1(B(0, e),R2)

‖U(0)−W‖2 ≤ C

∫

B(0,e)

‖e(u)‖2dx, ‖θ(0)− φ‖2 ≤ Ce−2

∫

B(0,e)

‖e(u)‖2dx,

‖v(0)‖2 ≤ C

∫

B(0,e)

‖e(u)‖2dx.
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Proof. By rescaling we can reduce to the case e = 1. Let us assume by contradiction that there exists a sequence un

such that
∫

B(0,e)
‖e(un)‖2dx tends to zero while one of the quantities ‖Un(0)−Wn‖2, ‖vn(0)‖2 and ‖θn(0)− φn‖2

do not tend to zero. Adding if needed a rigid motion to un, we can assume Wn = 0 and φn = 0. From Korn
and Poincaré-Wirtingen inequalities we know that ‖un‖H1(B(0,e),R2) tends to zero. A trace theorem ensures that

un tends to zero in H1/2({0}× [−e, e],R2) and thus in L2({0} × [−e, e],R2). In consequence, contrarily to what we
have assumed, Un(0), vn(0) and θn(0) tend to zero.

Now, let 0 ≤ k < 1 < k′ < ℓ/(2e). In ω, we consider the piecewise constant functions (µ̃, λ̃) defined by
µ̃(x1, x2) = µ, λ̃(x) = λ if |x1| < ℓ/2−k′e, µ̃(x) = kµ, λ̃(x) = kλ, otherwise and we denote respectively (U−, θ−, v−)
and (U+, θ+, v+) the values of (U, θ, v) at x1 = − ℓ

2 and x1 = + ℓ
2 .

Lemma 2. There exists a constant C depending only on k, k′ and ν such that, for any u ∈ H1(ω),

∫

ω

(

µ̃‖e(u)‖2 + λ̃

2
tr(e(u))2

)

≥ Y e

ℓ

(

1− C
e

ℓ

)

×
[

(U+
1 − U−

1 )2

+
e2

3

(

3(θ+ + θ− − 2
U+
2 − U−

2

ℓ
)2 + (θ+ − θ−)2

)

− e

ℓ
(v+ − v−)2

]

Lemma 3. There exists a constant C depending only on k, k′ and ν such that, for any U+, U− in R
2 and θ+, θ− in

R there exists u ∈ H1(ω,R2) satisfying u(x1, x2) = U−+θ−(−x2, x1) if x1 < − ℓ
2+k

′e, u(x1, x2) = U++θ+(−x2, x1)
if x1 >

ℓ
2 − k′e and

∫

ω

(

µ̃‖e(u)‖2 + λ̃

2
tr(e(u))2

)

≤ Y e

ℓ

(

1 + C
e

ℓ

)

[

(U+
1 − U−

1 )2 +
e2

3

(

3(θ+ + θ− − 2
U+
2 − U−

2

ℓ
)2 + (θ+ − θ−)2

)]

Proofs of these two lemmas are given in the Appendix.

3.2 Estimation for the whole structure

We can now prove Theorem 1.

Proof. We first notice that the number of edges which concur at a node yI,s of the graph is bounded by 9K. We
set k = (9K)−1. Therefore there exists a uniform lowerbound θm > 0 for the angles between these different edges.
The thickened edges of Ωε concurring at node yI,s do not intersect out of the disk of center yI,s and radius k′e with

k′ = (sin(θm/2))
−1. We consider on Ωε the functions (µ̃, λ̃) defined by µ̃(x) := µ0, λ̃(x) := λ0, if d(x, G̊

ε) > k′βε2,
µ̃(x) = kµ0, λ̃(x) = kλ0, otherwise.

Let uε be any sequence of displacement fields with bounded elastic energy Eε(u
ε) ≤M and converging to some

function u. Our choice for k and k′ allows us to split the energy :

Eε(u
ε) =

1

βε3

∫

Ωε

(

µ0‖e(uε)‖2 +
λ0
2
tr(e(uε))2

)

dx

≥ 1

βε3

∑

(I,p,s,s′)∈Iε×A

∫

SI,p,s,s′

(

µ̃‖e(uε)‖2 + λ̃

2
tr(e(uε))2

)

dx.

where SI,p,s,s′ denotes the rectangle with mean line [yI,s, yI+p,s′ ] and thickness 2βε2. Applying Lemma 2 to each
term of this sum, we get

Eε(u
ε) ≥ 1

2ε2
(

1− Cβ

ℓm
ε
)

∑

(I,p,s,s′)∈Iε×A

ap,s,s′
[

((Uε+
I,p,s,s′ − Uε−

I,p,s,s′) · τp,s,s′)2 −
βε

2ℓp,s,s′
(vε+I,p,s,s′ − vε−I,p,s,s′)

2

+
β2ε2

3

(

3
(

ε(θε+I,p,s,s′ + θε−I,p,s,s′)−
(Uε+

I,p,s,s′ − Uε−
I,p,s,s′) · τ⊥p,s,s′

ℓp,s,s′

)2
+ (ε(θε+I,p,s,s′ − θε−I,p,s,s′))

2
)]

where Uε+
I,p,s,s′ , U

ε−
I,p,s,s′ , v

ε+
I,p,s,s′ , v

ε−
I,p,s,s′ , θ

ε+
I,p,s,s′ , θ

ε−
I,p,s,s′ are the quantities associated to uε on the rectangle SI,p,s,s′

as in Lemma 2.
On the other hand, Lemma 1 states that, for any (p, s, s′), the quantities

∑

I ‖Uε−
I,p,s,s′ − ūεI,s‖2,

∑

I ‖Uε+
I,p,s,s′ −

ūεI+p,s‖2,
∑

I |vε−I,p,s,s′ |2,
∑

I |vε+I,p,s,s′ |2,
∑

I |ε(θε−I,p,s,s′ − φεI,s)|2 and
∑

I |ε(θε+I,p,s,s′ − φεI+p,s)|2 are all bounded by

9



∑

I

∫

Bε
I,s

‖e(u)‖2 and thus by Cε3 with C = Mβ
min(µ0,µ0+λ0)

. Here φεI,s is the quantity associated to uε on the disk

Bε
I,s as in Lemma 1. Hence

Eε(u
ε) ≥ 1

2ε2

∑

(I,p,s,s′)∈A

ap,s,s′
[

((ūεI+p,s′ − ūεI,s) · τp,s,s′)2 +
β2ε2

3

(

3(ε(φεI+p,s′ + φεI,s)

−
(ūεI+p,s′ − ūεI,s) · τ⊥p,s,s′

ℓp,s,s′
)2 + (ε(φεI+p,s′ − φεI,s))

2
)]

+O(
√
ε)

≥ Eε(ū
ε) + Fε(ū

ε, φε) +O(
√
ε).

Passing to the limit we get

lim inf Eε(u
ε) ≥ lim inf

(

Eε(ū
ε) + Fε(ū

ε, φε)
)

≥ inf
Uε,θε

{

lim inf
(

Eε(U
ε) + Fε(U

ε, θε)
)

; Uε⇀u
}

.

This being true for any sequence (uε) with bounded energy and converging to some function u, point (i) is proven.

Now let u be a measurable vector valued function and consider any sequence (Uε, θε) with bounded energy
(Eε(U

ε) + Fε(U
ε, θε) < M) and such that Uε⇀u. On each thickened edge SI,p,s,s′ , Lemma 3 provides a piecewise

C1 function uεI,p,s,s′ satisfying

uεI,p,s,s′(x1, x2) =

{

Uε
I,s + θεI,s × (−x2, x1) on Bε

I,s,

Uε
I+p,s′ + θεI+p,s′ × (−x2, x1) on Bε

I+p,s′ ,

and such that

∫

SI,p,s,s′

(

µ‖e(uεI,p,s,s′)‖2 +
λ

2
tr(e(uεI,p,s,s′))

2

)

dx ≤ ap,s,s′

2ε2
(1 +

Cβ

lp,s,s′
ε)

(

(

(Uε
I+p,s′ − Uε

I,s) · τp,s,s′
)2

+
β2ε2

3

(

3(εθεI+p,s′ + εθεI,s) +
2

lp,s,s′
((Uε

I+p,s′ − Uε
I,s) · τ⊥p,s,s′ )

)2

+ (εθεI+p,s′ − εθεI,s)
2

)

.

We can now define uε on Ωε by setting uε(x) := uεI,p,s,s′(x) if x ∈ SI,p,s,s′ . Our assumptions about the geometry
of the graph and our definition of k′ make this definition coherent on the intersections of different thickened edges.
By definition ūε = Uε and so uε⇀u. By summation we get

Eε(u
ε) ≤ (1 +

Cβ

lm
ε)(Eε(U

ε) + Fε(U
ε, θε)))

Passing to the limit

inf
uε⇀u

lim supEε(u
ε) ≤ lim supEε(u

ε) ≤ lim sup(Eε(U
ε) + Fε(U

ε, θε))).

This being true for any sequence (θε) and any sequence (Uε) converging to u, Point (ii) is proven.

4 Main result

From now on we will seek for the Γ-limit E of the sequence of the discrete functionals (Eε+Fε) defined in (9), (10).

We do not intend to study the way the different boundary conditions which could be imposed to our structures
pass to the limit. That is a very interesting topic as the boundary conditions associated to second gradient material
are rich and have exotic mechanical interpretation [26],[49]. But studying their whole diversity would lead to very
long mathematical developments. On the other hand, as the structures we consider may present in the limit some
inextensibility constraint, assuming, at it is frequent, Dirichlet boundary conditions would lead to a trivial set of
admissible deformations. So we decide to consider here only free boundary conditions. As well known, in this case,
the equilibrium of the structure can be reached only when the applied external actions are balanced and the solution
of equilibrium problems is defined up to a global rigid motion. In order to ensure uniqueness, we need to impose
that U and θ have zero mean values:

∑

I

1

K

K
∑

s=1

UI,s = 0,
∑

I

1

K

K
∑

s=1

θI,s = 0 (11)
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We associate to any sequence (Uε, θε) the families of vectors mε
I , v

ε
I,s and χε

I,p defined by

mε
I :=

1

K

K
∑

s=1

Uε
I,s, vεI,s :=

1

ε
(Uε

I,s −mε
I), χε

p,I :=
1

ε
(mε

I+p −mε
I) (12)

and the family of reals ωε
I,p,s,s′ defined by

ωε
I,p,s,s′ :=

{

ε−2(Uε
I+p,s′ − Uε

I,s) · τp,s,s′ , if (p, s, s′) ∈ A,

0 otherwise.
(13)

Using this notation, we can rewrite the two addends of the energy, Eε(U
ε) and Fε(U

ε, θε), under the forms

Ēε(v
ε, χε) := ε−2∑

I

∑

(p,s,s′)

ap,s,s′

2

(

(vεI+p,s′ − vεI,s + χε
I,p) · τp,s,s′

)2
(14)

F̄ε(v
ε, χε, θε) :=

∑

I

∑

(p,s,s′)

ap,s,s′β
2

6

(

3
(

θεI+p,s′ + θεI,s −
2

ℓp,s,s′
(vεI+p,s′ − vεI,s + χε

I,p) · τ⊥p,s,s′
)2

+
(

θεI+p,s′ − θεI,s
)2
)

.

(15)

Let us introduce the continuous counterparts of these quantities. For functions θ, v defined respectively on Ω ×
{1, . . . ,K} and η defined on Ω × P × {1, . . . ,K}, square integrable with respect to their first variable and taking
value respectively in R, R2 and R

2, we set

Ē(v, η) :=

∫

Ω

∑

(p,s,s′)

ap,s,s′

2
((vs′(x) − vs(x) + ηp,s′(x)) · τp,s,s′)2 dx, (16)

F̄ (v, η, θ) :=

∫

Ω

∑

p,s,s′

ap,s,s′β
2

6

(

3
(

θs′(x) + θs(x) −
2

ℓp,s,s′
(vs′ (x)− vs(x) + ηp,s′(x)) · τ⊥p,s,s′

)2
+
(

θs′(x)− θs(x)
)2
)

.

(17)

We extend this definition to distributions by setting Ē = +∞ or F̄ = +∞ whenever the integrands are not square
integrable. For any functions u and v respectively in L2(R2) and L2(R2 × {1, . . . ,K}) we set, in the sense of
distributions, for any (p, s) ∈ P × {1, . . . ,K}

(ηu)p,s := ∇u · p, (18)

(ξu,v)p,s = ∇vs · p+
1

2
∇∇u · p · p. (19)

The limit energy of our structure reads

E (u) := inf
w,v,θ

{

Ē(w, ξu,v) + F̄ (v, ηu, θ); Ē(v, ηu) = 0
}

. (20)

Indeed we have

Theorem 2. The sequence (Eε + Fε) Γ-converges to E :
(i) For all sequence (Uε, θε) such that Uε⇀u, we have lim inf(Eε(U

ε) + Fε(U
ε, θε)) ≥ E (u).

(ii) For any u such that E (u) < +∞, there exists a sequence (Uε, θε) such that Uε⇀u and lim sup(Eε(U
ε) +

Fε(U
ε, θε)) ≤ E (u).

In the next three sections we first prove the relative compactness of the sequences (Uε, θε) with bounded energies
and of the associated sequences mε, vε, χε; then we establish relationships between the limits of these quantities
and finally we prove Theorem 2.

4.1 Compactness

Lemma 4. Let (Uε, θε) with zero mean rigid motion satisfying Eε(U
ε) + Fε(U

ε, θε) ≤ M , then the sequences
(
∑

I
‖Uε

I,s‖2), (
∑

I
(θεI,s)

2), (
∑

I
‖mε

I‖2), (
∑

I
‖vεI,s‖2), (

∑

I
‖χε

I,p‖2) and (
∑

I
(ωε

I,p,s,s′)
2) are bounded.

11



Proof. The proof is based on the connectedness assumption, on successive applications of triangle inequality and
on the classical Korn inequality. Here M is a constant which can change from line to line.

Consider (p, s, s′) and (q, s′, s′′) in A. From expression (9) of Eε we immediately deduce that

∑

I

(ωε
I,p,s,s′)

2 = ε−2∑

I

(

Uε
I+p,s′ − Uε

I,s

ε
· τp,s,s′

)2

< M. (21)

From expression (10) of Fε we also deduce that

∑

I

(

θεI+p,s′ − θεI,s
)2
< M and

∑

I

(

Uε
I+p,s′ − Uε

I,s

εℓp,s,s′
· τ⊥p,s,s′ − θεI,s

)2

< M.

Owing to our connectedness assumption, let us introduce a path (si, pi, ǫi)
r
i=1 connecting node yεI,s to node yεI+p,s′

as described in section 2.1. For 0 ≤ j ≤ r, we set p̃j :=
∑j−1

i=1 ǫipi. Using triangle inequality we have

∑

I

(

θεI+p̃j ,sj − θεI,s

)2

< M and thus
∑

I

(

ǫj
Uε
I+p̃j+1,sj+1

− Uε
I+p̃j+1,sj

εℓpj,sj ,sj+1

· τ⊥pj ,sj ,sj+1
− θεI,s

)2

< M.

Setting Ũε
I,s,J,s′ := Uε

J,s′ − θεI,s(y
ε
J,s′ − yεI,s)

⊥ so that

Ũε
I,s,J+p,s′′ − Ũε

I,s,J,s′ = Uε
J+p,s′′ − Uε

J,s′ − εθεI,sℓp,s′,s′′τ
⊥
p,s′,s′′ ,

last inequality reads

∑

I

(

Ũε
I,s,I+p̃j+1,sj+1

− Ũε
I,s,I+p̃j+1,sj

εℓpj,sj ,sj+1

· τ⊥pj ,sj ,sj+1

)2

< M.

As (21) also implies ε−2
∑

I

(

(Ũε
I,s,I+p̃j+1,sj+1

− Ũε
I,s,I+p̃j+1,sj

) · τpj ,sj ,sj+1

)2

< M , we get

ε−2∑

I

∥

∥

∥
Ũε
I,s,I+p̃j+1,sj+1

− Ũε
I,s,I+p̃j+1,sj

∥

∥

∥

2

< M

which leads, still using triangle inequality, to ε−2
∑

I

∥

∥

∥
Ũε
I,s,I+p,s′ − Ũε

I,s,I,s

∥

∥

∥

2

< M or equivalently

ε−2∑

I

∥

∥Uε
I+p,s′ − Uε

I,s − θεI,s(y
ε
I+p,s′ − yεI,s)

⊥
∥

∥

2
< M. (22)

We focus temporarily on the particular case s = s′ = 1 which reads

ε−2∑

I

∥

∥Uε
I+p,1 − Uε

I,1 − εθεI,1p
⊥
∥

∥

2
< M (23)

and, in order to pass from this local rigidity inequality to a global one without stating any discrete version of
Korn inequality, we use a H1 interpolation. We fix two independent vectors p and q in P and divide the domain
in the disjoint union (for all I) of triangles (yεI,1, y

ε
I+p,1, y

ε
I+p+q,1) and (yεI,1, y

ε
I+q,1, y

ε
I+p+q,1). The piecewise affine

interpolation Uε of Uε defined by setting for any I,

Uε
(

yεI,1 + ε(ap+ bq)
)

:=

{

(1− a)Uε
I,1 + (a− b)Uε

I+p,1 + b Uε
I+p+q,1 if 0 ≤ b ≤ a ≤ 1,

(1− b)Uε
I,1 + (b− a)Uε

I+q,1 + aUε
I+p+q,1 if 0 ≤ a ≤ b ≤ 1,

belongs to H1 and satisfies ‖Uε‖2L2 ≥ C
∑

I
‖Uε

I,1‖2 for some constant C. Moreover on the two types of triangles
we have either ε∇Uε · p = Uε

I+p,1 − Uε
I,1 and ε∇Uε · q = Uε

I+p+q,1 − Uε
I+p,1 or ε∇Uε · p = Uε

I+p+q,1 − Uε
I+q,1 and

ε∇Uε · q = Uε
I+q,1 − Uε

I,1. In the first case we can write

ε e(Uε)|(p⊗ p) = (Uε
I+p,1 − Uε

I,1 − εθεI,1p
⊥) · p

ε e(Uε)|(q⊗ q) = (Uε
I+p+q,1 − Uε

I,1 − εθεI+p,1q
⊥) · q

ε e(Uε)|(p⊗ q+ q⊗ p) = (Uε
I+p,1 − Uε

I,1 − εθεI,1p
⊥) · q+ (Uε

I+p+q,1 − Uε
I,1 − εθεI+p,1q

⊥) · p
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where we have used the identity p⊥ ·q+q⊥ ·p = 0. The second case is similar. As p⊗p, q⊗q, (p⊗q+q⊗p) make a
basis for symmetric matrices, we obtain ‖e(Uε)‖2L2 ≤M by using (23) and summing over all triangles. We can then
use the classical Korn inequality : up to a global rigid motion, the function Uε satisfies ‖∇Uε‖2L2 ≤ M and owing
to Poincaré inequality ‖Uε‖2L2 ≤ M . From ‖Uε‖2L2 ≤ M we directly get

∑

I
‖Uε

I,1‖2 < M . From ‖∇Uε · p‖2L2 ≤ M

we get ε−2
∑

I

∥

∥Uε
I+p,1 − Uε

I,1

∥

∥

2
< M and thus

∑

I
(θεI,s)

2 < M .

We can now go back to (22). We get

ε−2∑

I

∥

∥Uε
I+p,s′ − Uε

I,s

∥

∥

2
< M. (24)

In particular ε−2
∑

I

∥

∥Uε
I,s − Uε

I,1

∥

∥

2
< M and so

∑

I

∥

∥Uε
I,s

∥

∥

2
< M (25)

Other bounds are now easy to get : taking the mean value with respect to s in (25) and (24) (with p = 0) gives
respectively

∑

I

‖mε
I‖2 ≤M,

∑

I

‖vεI,s‖2 ≤M, (26)

while taking the mean value with respect to s and s′ in (24) gives

∑

I

‖χε
I,p‖2 ≤M. (27)

4.2 Double scale convergence

The bounds that we established in Lemma 4 imply the existence of θ, u, v, χp and ωp,s,s′ in L2 such that, for any
s and up to subsequences,

θεs⇀θs, mε⇀u, vεs⇀vs, χε
p⇀χp and ωε

p,s,s′⇀ωp,s,s′ . (28)

The following lemma establishes useful properties of these limits. We follow the methods used in [4] for establishing
properties of double limits.

Lemma 5. We have

Uε
s⇀u,

K
∑

s=1

vs = 0 and χp = ∇u · p. (29)

Moreover there exist some fields ws and λ in L2(R2) such that, for any (p, s, s′) ∈ A,

ωp,s,s′ =
(

ws′ − ws +∇(vs′ + λ) · p+
1

2
∇∇u · p · p

)

· τp,s,s′ (30)

Proof. The convergence of vεs implies that (Uε
s −mε)⇀ 0 and so Uε

s⇀u.

The fact that
∑K

s=1 v
ε
I,s = 0 clearly implies that

∑K
s=1 vs(x) = 0.

To check that χp = ∇u · p, it is enough to notice that, for any smooth test field ϕ with compact support,

∫

Ω

χp(x) · ϕ(x) = lim
∑

I

ε−1(mε
I+p −mε

I) · ϕ(yεI) = lim
∑

I

mε
I · ε−1(ϕ(yεI−p)− ϕ(yεI))

= lim
∑

I

mε
I ·
(

−∇ϕ(yεI) · p) +O(ε)
)

= −
∫

Ω

u(x) ·
(

∇ϕ(x) · p
)

=

∫

Ω

(

∇u(x) · p
)

· ϕ(x).

Characterizing the limit ωp,s,s′ is more delicate. To that aim, let us introduce the set DA of families of distributions
in H−1(R2):

DA :=
{

ψp,s,s′ = (w′
s − ws +∇λ · p) · τp,s,s′ : (p, s, s′) ∈ A, ws ∈ L2, λ ∈ L2

}
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and DA
⊥ its orthogonal, that is the set of families (φp,s,s′)(p,s,s′)∈A of functions in H1(R2) such that, for all

ψp,s,s′ ∈ DA,
∑

(p,s,s′)∈A 〈ψp,s,s′ , φp,s,s′ 〉 = 0. Let us remark that, for any φ ∈ DA
⊥ we have

∑

(p,s,s′)∈A

(∇φp,s,s′ · p) τp,s,s′ = 0. (31)

and for any (ws) ∈ L2(R2,R2)K ,

∑

(p,s,s′)∈A

((ws′ − ws) · τp,s,s′)φp,s,s′ = 0. (32)

If we extend φ by setting φp,s,s′ = 0 whenever (p, s, s′) 6∈ A we can rewrite this last equation as

∑

(p,s,s′)

τp,s,s′ φp,s,s′ − τp,s′,s φp,s′,s = 0.

Thus for such functions we have, using (32),
∫

Ω

∑

(p,s,s′)∈A

ωp,s,s′(x)φp,s,s′ (x) = lim
∑

I

∑

(p,s,s′)∈A

ε−2(Uε
I+p,s′ − Uε

I,s) · (φp,s,s′ (yεI)τp,s,s′)

= lim
∑

I

∑

(p,s,s′)∈A

(ε−1(vεI+p,s′−vεI,s′)+ε−1(vεI,s′−vεI,s) + ε−2(mε
I+p −mε

I)) · (φp,s,s′ (yεI)τp,s,s′)

= lim
∑

I

∑

(p,s,s′)∈A

(ε−1(vεI+p,s′−vεI,s′) + ε−2(mε
I+p −mε

I)) · (φp,s,s′ (yεI)τp,s,s′ ).

Considering only smooth functions φp,s,s′ with compact support we can estimate the first addend by

lim
∑

I

∑

(p,s,s′)∈A

ε−1(vεI+p,s′ − vεI,s′) · (φp,s,s′(yεI)τp,s,s′)

= lim
∑

I

∑

(p,s,s′)∈A

vεI,s′ · (ε−1(φp,s,s′(y
ε
I−p)− φp,s,s′ (y

ε
I))τp,s,s′ )

= lim
∑

I

∑

(p,s,s′)∈A

vεI,s′ · ((−∇φp,s,s′ (yεI) · p)τp,s,s′ ) +O(ε)

= −
∫

Ω

∑

(p,s,s′)∈A

vs′(x) · ((∇φp,s,s′ (x) · p)τp,s,s′ ) dx

=
∑

(p,s,s′)∈A

〈

(∇vs′ (x) · p), (φp,s,s′ (x)τp,s,s′ )
〉

.

The second addend becomes using (31)

lim
∑

I

∑

(p,s,s′)∈A

ε−2(mε
I+p−mε

I)) · (φp,s,s′ (yεI)τp,s,s′ )

= lim
∑

I

∑

(p,s,s′)∈A

ε−2mε
I · ((φp,s,s′ (yεI−p)−φp,s,s′(yεI))τp,s,s′ )

= lim
∑

I

∑

(p,s,s′)∈A

mε
I · ((−ε−1∇φp,s,s′ (yεI) · p+

1

2
∇∇φp,s,s′ (yεI) · p · p)τp,s,s′)

= lim
∑

I

∑

(p,s,s′)∈A

mε
I · ((

1

2
∇∇φp,s,s′ (yεI) · p · p)τp,s,s′)

=

∫

Ω

∑

(p,s,s′)∈A

u(x) · ((1
2
∇∇φp,s,s′(x) · p · p)τp,s,s′ ) dx

=
∑

(p,s,s′)∈A

1

2

〈

(∇∇u(x) · p · p), (φp,s,s′ (x)τp,s,s′ )
〉

.
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Collecting these results we obtain that the distribution

ωp,s,s′ −
(

∇vs′ · p+
1

2
∇∇u · p · p

)

· τp,s,s′

is orthogonal to all smooth functions in DA
⊥ with compact support in Ω. As they are dense in DA

⊥, we know that
there exist some fields ws and λ in L2(R2) such that, for any (p, s, s′) ∈ A,

ωp
s,s′ =

(

ws′ − ws +∇(vs′ + λ) · p+
1

2
∇∇u · p · p

)

· τp,s,s′ .

4.3 Proof of the homogenization result

Proof. To prove assertion (i) of Theorem 2, we consider a sequence (Uε, θε) with bounded energy : Eε(U
ε) +

Fε(U
ε, θε) ≤ M (otherwise the result is trivial). Therefore ε2Eε(U

ε) tends to zero. We know from (28) and (29)
and Remark 1 that vεs⇀vs and χε

p⇀ηu. From Remark 2 we get

0 = lim inf
ε

(

ε2Eε(U
ε)
)

= lim inf
ε

(

ε2Ēε(v
ε, χε)

)

≥ Ē(v, ηu).

Hence Ē(v, ηu) = 0. Rewriting now Eε(U
ε) as

∑

I

∑

(p,s,s′)

ap,s,s′

2 (ωε
I,p,s,s′)

2, the energy reads

Ēε(v
ε, χε) + F̄ε(v

ε, χε, θε) =
∑

I

∑

(p,s,s′)

ap,s,s′

2

(

(

ωε
I,p,s,s′

)2
+
β2

3

(

3
(

θεI+p,s′ + θεI,s

− 2

ℓp,s,s′
(vεI+p,s′ − vεI,s + χε

I,p) · τ⊥p,s,s′
)2

+
(

θεI+p,s′ − θεI,s
)2
)

)

(33)

Using again (28), (29), (30) and Remarks 1 and 2 we get

lim inf
ε

(

Ēε(v
ε, χε) + F̄ε(v

ε, χε, θε)
)

≥
∫

Ω

∑

(p,s,s′)

ap,s,s′

2

(

(

ωp,s,s′(x)
)2

+
β2

3

(

3
(

θs′(x) + θs(x)

− 2

ℓp,s,s′
(vs′ (x)− vs(x) + χp(x)) · τ⊥p,s,s′

)2
+
(

θs′(x)− θs(x)
)2
)

)

dx

≥ Ē(w, ξu,v+λ) + F̄ (v, ηu, θ). (34)

Noticing that F̄ (v − λ, ηu, θ) = F̄ (v, ηu, θ) and Ē(v + λ, ηu) = Ē(v, ηu) = 0, we get the desired bound.

In order to prove assertion (ii), let us now consider a function u such that E(u) < +∞. By a density argument,
we can assume that u ∈ C∞(Ω). We introduce (v, w, θ) such that E(u) = Ē(w, ξu,v) + F̄ (v, ηu, θ) and Ē(v, ηu) = 0.
Their existence is ensured by the coercivity and lower semicontinuity of these functionals. The fields (v, w, θ) also
belong to C∞(Ω). Note that Ē(v, ηu) = 0 implies that, for any (p, s, s′) ∈ A,

(vs′ − vs +∇u · p) · τp,s,s′ = 0 (35)

from which we can deduce that

(∇vs′ · p−∇vs · p+∇∇u · p · p) · τp,s,s′ = 0. (36)

We now define Uε and θε by setting

Uε
I,s := u(yεI) + εvs(y

ε
I) + ε2ws(y

ε
I) and θεI,s := θs(y

ε
I). (37)
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It is clear that Uε⇀u and θεs⇀θs. Let us compute Eε(U
ε) + Fε(U

ε, θε). We have, using (35) and (36),

ωε
I,p,s,s′ = ε−2τp,s,s′ · (Uε

I+p,s′ − Uε
I,s)

= τp,s,s′ ·
(

ε−2(u(yεI+p)− u(yεI)) + ws′ (y
ε
I+p)− ws(y

ε
I)

+ ε−1(vs′ (y
ε
I+p)− vs(y

ε
I+p)) + ε−1(vs(y

ε
I+p)− vs(y

ε
I))
)

= τp,s,s′ ·
(

ε−1∇u(yεI) · p+
1

2
∇∇u(yεI) · p · p+ ws′(y

ε
I+p)− ws(y

ε
I)

− ε−1∇u(yεI+p) · p+∇vs(yεI) · p
)

+O(ε)

= τp,s,s′ ·
(

− 1

2
∇∇u(yεI) · p · p+∇vs(yεI) · p+ ws′(y

ε
I+p)− ws(y

ε
I)
)

+O(ε)

= τp,s,s′ ·
(1

2
∇∇u(yεI) · p · p+∇vs′ (yεI) · p+ ws′(y

ε
I+p)− ws(y

ε
I)
)

+O(ε).

Hence ωε
I,p,s,s′ = τp,s,s′ ·

(

ws′(y
ε
I+p)− ws(y

ε
I) + (ξu,v)p,s′(y

ε
I)
)

+O(ε) and

limEε(U
ε) = lim

∑

I

∑

(p,s,s′)∈A

aps,s′

2
(ωε

I,p,s,s′)
2

=

∫

Ω

∑

(p,s,s′)∈A

aps,s′

2

(

(

ws′(x) − ws(x) + (ξu,v)p,s,s′
)

· τp,s,s′
)2

= Ē(w, ξu,v). (38)

On the other hand

ε−1τ⊥p,s,s′ · (Uε
I+p,s′ − Uε

I,s) = τ⊥p,s,s′ ·
(

ε−1
(

u(yεI+p)− u(yεI)
)

+ vs′(y
ε
I+p)− vs(y

ε
I)
)

+O(ε)

= τ⊥p,s,s′ ·
(

∇u(yεI) · p+ vs′(y
ε
I+p)− vs(y

ε
I)
)

+O(ε).

As vs(y
ε
I+p) = vs(y

ε
I) +O(ε) and θs(y

ε
I+p) = θs(y

ε
I) +O(ε), we have

limFε(U
ε, θε) = lim

∑

I

∑

(p,s,s′)

ap,s,s′β
2

6

(

3
(

θs′(y
ε
I) + θs(y

ε
I)

− 2

ℓp,s,s′
(vs′(y

ε
I)− vs(y

ε
I) +∇u(yεI) · p) · τ⊥p,s,s′

)2
+
(

θs′(y
ε
I)− θs(y

ε
I)
)2
)

= F̄ (v, ηu, θ). (39)

The result is obtained by collecting (38) and (39).

5 Making explicit the limit energy

In the limit energy we have identified, namely

E (u) := inf
w,v,θ

{

Ē(w, ξu,v) + F̄ (v, ηu, θ); Ē(v, ηu) = 0
}

.

one has to compute the minimum with respect to three extra kinematic variables. These minima can essentially
be computed locally, through “a cell problem”. This is clearly the case for θ and w for which solutions depend
linearly respectively on ξu,v and (v, ηu). The quadratic constraint E(v, ηu) = 0 is also easily solved and v takes the
form v = L · ηu + λ with L a linear operator and λ any field in the kernel of this energy. Collecting these results,
E becomes the integral of a quadratic form of the quantities ∇u, ∇∇u, λ and ∇λ. This procedure is pure linear
algebra dealing with very low dimensional matrices. The computation can even be performed analytically but using
a software like Octave c© or Matlab R© saves a lot of time.

A priori, the infimum with respect to λ cannot be computed locally and the limit model involves this extra
kinematic variable : it is both a generalized continuum model [29] and a strain gradient model. The variable λ,
which could be called a “micro-adjustment”, always play a fundamental role in the limit energy. However in many
cases, ∇λ can be computed locally and λ can be eliminated. This is the case for the three examples we have
provided in figures 1 and 3. For making explicit the limit energy of these three examples, we fix the values of the
interactions by assuming that ap,s,s′ = 1 for all connecting edges and that β = 1 : we obtain
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• the homogenized material corresponding to graph given in Figure 3a is submitted to the constraints

e1,1(u) = 0, e2,2(u) = 0

and has the following elastic energy

E (u) =

∫

Ω

3(e1,2(u))
2 dx.

It corresponds to a classical elastic material which is inextensible in the directions e1 and e2.

• the homogenized material corresponding to graph given in Figure 3b is submitted to the same constraints
e1,1(u) = 0, e2,2(u) = 0 but has the following elastic energy

E (u) =

∫

Ω

96

5

(

e1,2(u)
)2

+
1

16

(∂2u2
∂x21

)2

dx.

We get here a second gradient material. The point is that all odd horizontal layers of the structure, owing to
the diagonal bars, behave like bending beams. The second gradient term of the homogenized energy results
from this phenomenon. We are in a similar case as the ones described in [44], [19]. The energy is not complete :
indeed it can be rewritten

E (u) =

∫

Ω

96

5

(

e1,2(u)
)2

+
1

16

( ∂

∂x1

(∂u2
∂x1

− ∂u1
∂x2

))2

dx.

The homogenized material enters in the framework of couple-stress models.

• the homogenized material corresponding to pantographic graph given in Figure 1 is more interesting. It is
submitted to the constraint e2,2(u) = 0 and has the following elastic energy

E (u) =

∫

Ω

(

72
(

e1,1(u)
)2
+144

(

e1,2(u)
)2
+

3

88

(

(

∂2u1
∂x21

)2

+

(

∂2u2
∂x21

)2

+
1

524

(

44
∂2u1
∂x1∂x2

+ 13
∂2u2
∂x21

)2
))

dx1dx2

The presence of the term
(

∂2u1

∂x2
1

)2

makes this energy a complete second gradient one. Due to this term, the

homogenized material has an exotic behavior : when a part of the domain is extended in the e1 direction, then
this extension tends to expand in the e1 direction. The term (e1,1)

2 damps this expansion with a characteristic

length
√

3
88×72 ≈ 0.13.

6 Conclusion

We have proved that the homogenized energies of our graph-based structures correspond to second gradient models
possibly with an extra kinematic variable. Using our general result, it is very easy to test different designs and to
understand the source of second gradient effects. Our results differ from the energies which could be obtained by a
formal asymptotic development (for instance in [42] equation (4.46)). It is obvious that one must not approximate
the displacement field inside the structure by a Taylor expansion of the macroscopic displacement field : this
approximation is much too rough for our structures and would overestimate the homogenized energy. But assuming
a double scale expansion for the displacement field is still not accurate enough: such an expansion cannot describe
the flexural behavior of the slender rectangles which (see the proofs of lemmas 2 and 3 in the appendix) is due
to Bernoulli-Navier displacements at scale ε2. However, even if a double scale expansion cannot be used for our
original problem (3), we note in view of (37), that it could be used for the displacements of the nodes in the discrete
problem Eε + Fε and would lead to the correct homogenized behavior.

We must warn the reader that the source of second gradient effects does not ensue from flexural interactions.
The fact that bending stiffness is by itself a second gradient effect may indeed be misleading. The reader may
infer that the presence in our structures of slender slabs, in which Euler-Bernoulli-Navier motions take place, is
the source of the homogenized second gradient effects. We emphasize that is not the case : even when β = 0, that
is when bending stiffness is neglected, second gradient effects remain. They are due to the extensional stiffness of
the slender slabs and to a particular design of the periodic cell while the bending stiffness is, on the contrary, the
source of the first gradient effects in the homogenized energy and ensures the relative compactness of the considered
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energies. To understand the nature of the appearance of second gradient through the homogenization process and
to conceive new structures with such effects, we recommend the reader to forget bending stiffness and focus on the
case β = 0 reminding that relative compactness could also be ensured by suitable boundary conditions.

The reader must also be aware that, depending on the geometry of the considered graph, second gradient effects
may be present or not. They are present when considering the graphs represented in Figure 3b or 1 but absent
when considering the graph of figure 3a. The interesting designs are those having floppy modes when considering
only the extensional energy but such that the floppy modes must have uniform strain. For instance, the interest of
the graph represented in Figure 1 lies in its uniform horizontal global extension floppy mode.

The detailed description of the algorithm which makes explicit the limit energy for different dimensions of space
and periodicity will be given in [1].

7 Appendix

Here we collect sketches of the technical proofs of the lemma needed for the reduction of the 2D elastic problem to
the discrete one.

Proof of lowerbound Lemma 2: By adding if needed a rigid motion to u, we can restrict our attention to the case
U−
2 = U+

2 = 0 and U−
1 = −U+

1 . We also remark that, for any σ ∈ L2(ω),

∫

ω

(

µ̃‖e(u)‖2 + λ̃

2
tr(e(u))2

)

≥ −
∫

ω

(

1

4µ̃
‖σ‖2 − λ̃

8µ̃(λ̃+ µ̃)
tr(σ)2

)

+

∫

ω

σ : e(u).

Let us choose

σ =

(

a+ 2b(x1 + c)x2 b(e2 − x22)
b(e2 − x22) 0

)

with a = 2Y
ℓ U

+
1 , b = − 3Y

ℓ2 (θ
− + θ+) and c = ℓ

6
θ+−θ−

θ−+θ+ . Setting Ỹ (x) := 4µ̃(µ̃+λ̃)

2µ̃+λ̃
(which takes the values Y and kY ),

we have

1

4µ̃
‖σ‖2 − λ̃

8µ̃(λ̃+ µ̃)
tr(σ)2 =

1

2Ỹ

(

(1 + ν)‖σ‖2 − ν tr(σ)2
)

=
1

2Ỹ

(

(a+ 2b(x1 + c)x2)
2 + 2b2(1 + ν)(e2 − x22)

2
)

.

Integrating over the thickness we get

∫

ω

1

4µ̃
‖σ‖2 − λ̃

8µ̃(λ̃+ µ̃)
tr(σ)2 =

∫ ℓ/2

−ℓ/2

1

2Ỹ

(

2ea2 +
8e3

3
b2(x1 + c)2 +

32e5

15
(1 + ν)b2

)

dx1.

Direct computations give
∫ ℓ/2

−ℓ/2

1

Ỹ (x1)
dx1 ≤ ℓ

Y
(1 + 2

k′

k

e

ℓ
)

and
∫ ℓ/2

−ℓ/2

(x1 + c)2

Ỹ (x1)
dx1 ≤ ℓ3

36Y

(

3 +

(

6c

ℓ

)2
)

(1 + 12
k′

k

e

ℓ
).

Hence

∫

ω

1

4µ̃
‖σ‖2 − λ̃

8µ̃(λ̃+ µ̃)
tr(σ)2 ≤ (1 + 15

k′

k

e

ℓ
)
Y e

ℓ

[

(2U+
1 )2 +

e2

3

(

3(θ+ + θ−)2 +
(

θ+ − θ−
)2
) ]

.

On the other hand, noticing that the chosen field σ is divergence free and thus that
∫

ω σ : e(u) =
∫

∂ω(σ · n) · u, we
obtain

∫

ω

σ : e(u) ≥ (1− e

ℓ
)
2Y e

ℓ

[

(2U+
1 )2 +

e2

3

(

3(θ+ + θ−)2 + (θ+ − θ−)2
)

− e

ℓ
(v+ − v−)2

]

.

The lemma is proven by collecting these two results.
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Proof of upperbound lemma 3: By adding if needed a rigid motion to u, we can restrict our attention to the case
U−
2 +θ−k′e = U+

2 −θ+k′e = 0 and U−
1 = −U+

1 . In that case we simply have to state for the energy the upperbound

∫

ω

(

µ̃‖e(u)‖2 + λ̃

2
tr(e(u))2

)

≤ Y e

ℓ

(

1 + C
e

ℓ

)

[

(U+
1 − U−

1 )2+

e2

3

(

3γ2(θ+ + θ−)2 + (θ+ − θ−)2
)]

(40)

where γ := ℓ−2k′e
ℓ = 1 − 2k′ eℓ . We introduce the continuous piecewise affine function ϕ defined by ϕ(x) = 1 if

|x| < ℓ
2 − 2k′e, ϕ(x) = 0 if |x| > ℓ

2 − k′e. Then we define u by setting u(x1, x2) = U− + θ−(−x2, x1 + ℓ
2 ) if

x1 < − ℓ
2 + k′e, u(x1, x2) = U+ + θ+(−x2, x1 − ℓ

2 ) if x1 >
ℓ
2 − k′e and, for |x1| < ℓ

2 − k′e,

u1(x1, x2) := (U+
1 − U−

1 )
x1
γℓ

− 1

4ℓ2

(12x21
γ2

(θ+ + θ−) +
4ℓx1
γ

(θ+ − θ−)− ℓ2(θ+ + θ−)
)

x2

u2(x1, x2) :=
γ

8ℓ2

(2x1
γ

(θ+ + θ−) + ℓ(θ+ − θ−)
)(4x21

γ2
− ℓ2

)

− γνϕ(x1)

ℓ2

(

ℓ(U+
1 − U−

1 )x2 −
(6x1
γ

(θ+ + θ−) + ℓ(θ+ − θ−)
)x22
2

)

.

It is straightforward to check that u belongs to H1(ω,R2) and some cumbersome but direct computations lead to
estimation (40).
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