R. M. Anderson and R. M. May, Infectious diseases of humans: dynamics and control, 1991.

M. Newman, Networks: An Introduction, 2010.
DOI : 10.1093/acprof:oso/9780199206650.001.0001

G. Caldarelli, Scale-Free Networks: Complex Webs in Nature and Technology, 2007.
DOI : 10.1093/acprof:oso/9780199211517.001.0001

R. Pastor-satorras and A. Vespignani, Epidemic Spreading in Scale-Free Networks, Physical Review Letters, vol.62, issue.14, p.3200, 2001.
DOI : 10.1103/PhysRevE.62.7474

URL : https://repository.library.northeastern.edu/files/neu:331357/fulltext.pdf

R. Pastor-satorras, C. Castellano, P. V. Mieghem, and A. Vespignani, Epidemic processes in complex networks, Reviews of Modern Physics, vol.5550, issue.3, p.925, 2015.
DOI : 10.1016/j.physleta.2007.01.094

M. Karsai, M. Kivelä, R. K. Pan, K. Kaski, J. Kertész et al., Small but slow world: How network topology and burstiness slow down spreading, Physical Review E, vol.83, issue.2, p.25102, 2011.
DOI : 10.1126/science.1174562

URL : http://arxiv.org/pdf/1006.2125

A. Machens, F. Gesualdo, C. Rizzo, A. Tozzi, A. Barrat et al., An infectious disease model on empirical networks of human contact: bridging the gap between dynamic network data and contact matrices, BMC Infectious Diseases, vol.5, issue.1, p.185, 2013.
DOI : 10.1371/journal.pcbi.1001109

URL : https://hal.archives-ouvertes.fr/hal-00817269

C. Cattuto, W. Van-den-broeck, A. Barrat, V. Colizza, J. Pinton et al., Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks, PLoS ONE, vol.41, issue.7, p.11596, 2010.
DOI : 10.1371/journal.pone.0011596.s007

URL : https://hal.archives-ouvertes.fr/hal-00503275

A. Barrat, C. Cattuto, A. E. Tozzi, P. Vanhems, and N. Voirin, Measuring contact patterns with wearable sensors: methods, data characteristics and applications to data-driven simulations of infectious diseases, Clinical Microbiology and Infection, vol.20, issue.1, p.10, 2014.
DOI : 10.1111/1469-0691.12472

URL : https://hal.archives-ouvertes.fr/hal-00921838

R. Pastor-satorras and A. Vespignani, Immunization of complex networks, Physical Review E, vol.292, issue.3, p.36104, 2002.
DOI : 10.1126/science.1061076

R. Cohen, S. Havlin, and D. Avraham, Efficient Immunization Strategies for Computer Networks and Populations, Physical Review Letters, vol.25, issue.24, p.247901, 2003.
DOI : 10.1038/35075138

URL : http://arxiv.org/pdf/cond-mat/0207387

S. Funk, M. Salathé, and V. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: a review, Journal of The Royal Society Interface, vol.4, issue.50, p.1247, 2010.
DOI : 10.1007/s10867-008-9060-9

N. Perra, D. Balcan, B. Gonçalves, and A. Vespignani, Towards a Characterization of Behavior-Disease Models, PLoS ONE, vol.1, issue.8, p.23084, 2011.
DOI : 10.1371/journal.pone.0023084.t001

C. Granell, S. Gómez, and A. Arenas, Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks, Physical Review Letters, vol.111, issue.12, p.128701, 2013.
DOI : 10.1103/PhysRevLett.107.068701

E. Massaro and F. Bagnoli, Epidemic spreading and risk perception in multiplex networks: A self-organized percolation method, Physical Review E, vol.90, issue.5, p.52817, 2014.
DOI : 10.1103/PhysRevLett.53.311

F. Bagnoli, P. Lio, and L. Sguanci, Risk perception in epidemic modeling, Physical Review E, vol.72, issue.6, p.61904, 2007.
DOI : 10.1103/PhysRevE.71.046108

URL : http://arxiv.org/pdf/0705.1974

B. Kotnis and J. Kuri, Stochastic analysis of epidemics on adaptive time varying networks, Physical Review E, vol.87, issue.6, p.62810, 2013.
DOI : 10.1046/j.1365-2656.2003.00675.x

A. Rizzo, M. Frasca, and M. Porfiri, Effect of individual behavior on epidemic spreading in activity-driven networks, Physical Review E, vol.90, issue.4, p.42801, 2014.
DOI : 10.1080/00107510500052444

M. Starnini and R. Pastor-satorras, Topological properties of a time-integrated activity-driven network, Physical Review E, vol.87, issue.6, p.62807, 2013.
DOI : 10.1103/PhysRevLett.89.208701

M. Karsai, N. Perra, and A. Vespignani, Time varying networks and the weakness of strong ties, Scientific Reports, vol.86, issue.1, p.4001, 2014.
DOI : 10.1103/PhysRevLett.86.3200

URL : https://hal.archives-ouvertes.fr/hal-00960361

M. Boguñá, C. Castellano, and R. Pastor-satorras, Nature of the Epidemic Threshold for the Susceptible-Infected-Susceptible Dynamics in Networks, Physical Review Letters, vol.111, issue.6, p.68701, 2013.
DOI : 10.1103/PhysRevE.71.027103

A. S. Mata, M. Boguñá, C. Castellano, and R. Pastor-satorras, Lifespan method as a tool to study criticality in absorbing-state phase transitions, Physical Review E, vol.91, issue.5, p.52117, 2015.
DOI : 10.1007/BF01314934

C. Castellano and R. Pastor-satorras, On the numerical study of percolation and epidemic critical properties in networks, The European Physical Journal B, vol.71, issue.11, p.243, 2016.
DOI : 10.1103/PhysRevE.71.027103

K. Sun, A. Baronchelli, and N. Perra, Contrasting effects of strong ties on SIR and SIS processes in temporal networks, The European Physical Journal B, vol.111, issue.12, p.326, 2015.
DOI : 10.1103/PhysRevLett.111.068701

J. L. Cardy, Finite Size Scaling, Current Physics- Sources and Comments, 1988.

S. Liu, N. Perra, M. Karsai, and A. Vespignani, Controlling Contagion Processes in Activity Driven Networks, Physical Review Letters, vol.112, issue.11, p.118702, 2014.
DOI : 10.1088/1367-2630/14/9/093003

URL : https://hal.archives-ouvertes.fr/hal-01100409

M. Starnini and R. Pastor-satorras, Temporal percolation in activity-driven networks, Physical Review E, vol.89, issue.3, p.32807, 2014.
DOI : 10.1038/srep04001

URL : http://upcommons.upc.edu/bitstream/2117/26924/1/Temporal%20percolation%20in%20activity.pdf