J. Nassour, P. Hénaff, F. B. Ouezdou, and G. Cheng, A study of adaptive locomotive behaviors of a biped robot: Patterns generation and classification, Proc. 11th Int. Conf. Simul. Adapt. Behavior: Animals Animats, pp.313-324, 2010.

A. Fairhall and W. Bialek, Adaptive spike coding, The Handbook of Brain Theory and Neural Networks, M. Arbib, 2002.

S. D. Iversen and M. Mishkin, Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity, Experim. Brain Res, vol.11, issue.4, pp.376-386, 1970.

S. J. Thorpe, E. T. Rolls, and S. Maddison, The orbitofrontal cortex: Neuronal activity in the behaving monkey, Experim. Brain Res, vol.49, issue.1, pp.93-115, 1983.

L. Tremblay and W. Schultz, Relative reward preference in primate orbitofrontal cortex, Nature, vol.398, issue.6729, pp.704-708, 1999.

S. Kobayashi, O. P. De-carvalho, and W. Schultz, Adaptation of reward sensitivity in orbitofrontal neurons, J. Neurosci, vol.30, issue.2, pp.534-544, 2010.

L. Tremblay and W. Schultz, Modifications of reward expectationrelated neuronal activity during learning in primate orbitofrontal cortex, J. Neurophysiol, vol.83, issue.4, pp.1877-1885, 2000.

T. Singer, B. Seymour, J. O'doherty, H. Kaube, R. J. Dolan et al., Empathy for pain involves the affective but not sensory components of pain, Science, vol.303, issue.5661, pp.1157-1162, 2004.

M. Cohen, A. Heller, and C. Ranganath, Functional connectivity with anterior cingulate and orbitofrontal cortices during decision-making, Cognit. Brain Res, vol.23, issue.1, pp.61-70, 2005.

J. W. Brown and T. S. Braver, A computational model of risk, conflict, and individual difference effects in the anterior cingulate cortex, Brain Res, vol.1202, pp.99-108, 2008.

R. B. Mars, M. G. Coles, M. J. Grol, C. B. Holroyd, S. Nieuwenhuis et al., Neural dynamics of error processing in medial frontal cortex, Neuroimage, vol.28, issue.4, pp.1007-1013, 2005.

W. J. Gehring, M. G. Coles, D. E. Meyer, and E. Donchin, The errorrelated negativity: An event-related potential accompanying errors, J. Psychophysiol, vol.27, p.34, 1990.

J. Hohnsbein, M. Falkenstein, and J. Hoorman, Error processing in visual and auditory choice reaction tasks, J. Psychophysiol, vol.3, p.32, 1989.

J. W. Brown and T. S. Braver, Learned predictions of error likelihood in the anterior cingulate cortex, Science, vol.307, pp.1118-1121, 2005.

L. Van-leijenhorst, P. M. Westenberg, and E. A. Crone, A developmental study of risky decisions on the cake gambling task: Age and gender analyses of probability estimation and reward evaluation, Develop. Neuropsychol, vol.33, issue.2, pp.179-196, 2008.

C. Sabourin, O. Bruneau, and G. Buche, Control strategy for the robust dynamic walk of a biped robot, Int. J. Robot. Res, vol.25, pp.843-860, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00092004

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 1998.

J. Morimoto, J. Nakanishi, G. Endo, G. Cheng, C. G. Atkeson et al., Poincaré-map-based reinforcement learning for biped walking, Proc. IEEE Int. Conf. Robot. Autom, pp.2381-2386, 2005.

C. Chew and G. A. Pratt, Dynamic bipedal walking assisted by learning, Robotica, vol.20, issue.5, pp.477-491, 2002.

D. Kati? and M. Vukobratovi?, Control algorithm for biped walking using reinforcement learning, Proc. 2nd Serbian-Hungarian Joint Symp, pp.1-12, 2004.

D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux et al., Mechatronic design of NAO humanoid, Proc. IEEE Int. Conf. Robot. Autom, pp.769-774, 2009.

G. Cheng, S. Hyon, J. Morimoto, A. Ude, J. G. Hale et al., CB: A humanoid research platform for exploring neuroscience, Adv. Robot, vol.21, issue.10, pp.1097-1114, 2007.

K. Matsumoto, W. Suzuki, and K. Tanaka, Neuronal correlates of goal-based motor selection in the prefrontal cortex, Science, vol.301, issue.5630, pp.229-232, 2003.

T. Kohonen, Self-Organizing Maps (Information Sciences), vol.30, 1995.

A. Iosifidis, A. Tefas, and I. Pitas, View-invariant action recognition based on artificial neural networks, IEEE Trans. Neural Netw. Learn. Syst, vol.23, issue.3, pp.412-424, 2012.

N. Manukyan, M. Eppstein, and D. Rizzo, Data-driven cluster reinforcement and visualization in sparsely-matched self-organizing maps, IEEE Trans. Neural Netw. Learn. Syst, vol.23, issue.5, pp.846-852, 2012.

S. Ulbrich, V. Angulo, T. Asfour, C. Torras, and R. Dillmann, General robot kinematics decomposition without intermediate markers, IEEE Trans. Neural Netw. Learn. Syst, vol.23, issue.4, pp.620-630, 2012.

J. Van-gelder, R. E. De-vries, and J. Van-der-pligt, Evaluating a dual-process model of risk: Affect and cognition as determinants of risky choice, J. Behav. Decision Making, vol.22, issue.1, pp.45-61, 2009.

B. Pawlowski, R. Atwal, and R. I. Dunbar, Sex differences in everyday risk-taking behavior in humans, Evol. Psychol, vol.6, issue.1, pp.29-42, 2008.

P. Horvath and M. Zuckerman, Sensation seeking, risk appraisal, and risky behavior, Personal. Individual Differences, vol.14, issue.1, pp.41-52, 1993.

H. Ahn and R. W. Picard, Affective-cognitive learning and decision making: A motivational reward framework for affective agent, Proc. 1st Int. Conf. Affect. Comput. Intell. Interact, pp.1-8, 2005.

X. Wang, D. Kruger, and A. Wilke, Toward the development of an evolutionarily valid domain-specific risk-taking scale, Evol. Psychol, vol.5, issue.3, pp.555-568, 2007.

J. , Adaptive learning and risk taking, Psychol. Rev, vol.114, issue.1, pp.177-187, 2007.

J. G. March, Learning to be risk averse, Psychol. Rev, vol.103, issue.2, pp.309-319, 1996.

J. Nassour, P. Henaff, F. B. Ouezdou, and G. Cheng, Experiencebased learning mechanism for neural controller adaptation: Application to walking biped robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst, pp.2616-2621, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00519941

T. Geng, B. Porr, and F. Wörgötter, Fast biped walking with a sensordriven neuronal controller and real-time online learning, Int. J. Robot. Res, vol.25, issue.3, pp.243-259, 2006.

T. S. Li, Y. Su, S. Lai, and J. Hu, Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic, Man, Cybern. B, Cybern, vol.41, issue.3, pp.736-748, 2011.

G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng, Learning CPG-based biped locomotion with a policy gradient method: Application to a humanoid robot, Int. J. Robot. Res, vol.27, pp.213-228, 2008.

G. Grudic, V. Kumar, and L. H. Ungar, Using policy gradient reinforcement learning on autonomous robot controllers, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst, pp.406-411, 2003.

J. Peters, S. Vijayakumar, and S. Schaal, Reinforcement learning for humanoid robotics, Proc. IEEE-RAS Int. Conf. Humanoid Robots, pp.1-20, 2003.

J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs, 1994.

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, 1989.

G. Orlovsky, T. Deliagina, and S. Grillner, Neuronal Control of Locomotion: From Mollusc to Man, 1999.

D. A. Mccrea and I. A. Rybak, Organization of mammalian locomotor rhythm and pattern generation, Brain Res. Rev, vol.57, issue.1, pp.134-146, 2008.

G. T. Brown, The intrinsic factors in the act of progression in the mammal, Proc. Royal Soc. London, vol.84, issue.572, pp.308-319, 1911.

S. Rossignol, R. Dubuc, and J. Gossard, Dynamic sensorimotor interactions in locomotion, Physiol. Rev, vol.86, issue.1, pp.89-154, 2006.

C. M. Pinto and M. Golubitsky, Central pattern generators for bipedal locomotion, J. Math. Biol, vol.53, issue.3, pp.474-489, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00582637

S. Hooper, Central pattern generators, Current Biol, vol.10, pp.176-177, 2000.

A. D. Kuo, The relative roles of feedforward and feedback in the control of rhythmic movements, Motor Control, vol.6, issue.2, pp.129-145, 2002.

O. Kiehn and S. J. Butt, Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord, Progr. Neurobiol, vol.70, issue.4, pp.347-361, 2003.

H. Kimura, S. Akiyama, and K. Sakurama, Realization of dynamic walking and running of the quadruped using neural oscillator, Auton. Robots, vol.7, issue.3, pp.247-258, 1999.

G. Taga, Nonlinear dynamics of human locomotion: From realtime adaptation to development, Adaptive Motion of Animals and Machines, pp.189-204, 2006.

A. J. Ijspeert, Central pattern generators for locomotion control in animals and robots: A review, Neural Netw, vol.21, issue.4, pp.642-653, 2008.

J. Morimoto, G. Endo, J. Nakanishi, and G. Cheng, A biologically inspired biped locomotion strategy for humanoid robots: Modulation of sinusoidal patterns by a coupled oscillator model, IEEE Trans. Robot, vol.24, issue.1, pp.185-191, 2008.

K. Matsuoka, Sustained oscillations generated by mutually inhibiting neurons with adaptation, Biol. Cybern, vol.52, issue.6, pp.367-376, 1985.

D. R. Mcmillen, G. M. D'eleuterio, and J. R. Halperin, Simple central pattern generator model using phasic analog neurons, Phys. Rev. E, Stat. Phys. Plasmas Fluids Rel. Interdiscip. Topics, vol.59, issue.6, pp.6994-6999, 1999.

J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal et al., Learning from demonstration and adaptation of biped locomotion, Robot. Auton. Syst, vol.47, issue.2-3, pp.79-91, 2004.

L. Righetti, J. Buchli, and A. J. Ijspeert, Dynamic Hebbian learning in adaptive frequency oscillators, Phys. D, vol.216, issue.2, pp.269-281, 2006.

R. Ludovic, B. Jonas, and I. A. Jan, Adaptive frequency oscillators and applications, Open Cybern. Syst. J, vol.3, issue.2, pp.64-69, 2009.

P. Rowat and A. Selverston, Learning algorithms for oscillatory networks with gap junctions and membrane currents, Netw., Comput. Neural Syst, vol.2, issue.1, pp.17-41, 1991.

B. Abernethy, The Biophysical Foundations of Human Movement, 2005.

A. C. Guyton and J. E. Hall, Textbook of Medical Physiology, 2006.

N. Berryman, M. Gayda, A. Nigam, M. Juneau, L. Bherer et al., Comparison of the metabolic energy cost of overground and treadmill walking in older adults, Eur. J. Appl. Physiol, vol.112, pp.1-8, 2011.

R. Margaria, Biomechanics and Energetics of Muscular Exercise, 1976.