archives-ouvertes

High-gain extended Kalman flter for continuous-discrete
systems with asynchronous measurements
Aida Feddaoui, Nicolas Boizot, Eric Busvelle, Vincent Hugel

» To cite this version:

Aida Feddaoui, Nicolas Boizot, Eric Busvelle, Vincent Hugel.
for continuous-discrete systems with asynchronous measurements. International Journal of Control,

Taylor & Francis, 2018, [10.1080/00207179.2018.1539525L] hal-01785473v3[]

HAL Id: hal-01785473
https://hal-univ-tin.archives-ouvertes.fr/hal-01785473v3
Submitted on 21 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entifc research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépdt et a la difusion de documents
scientifques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche frangais ou étrangers, des laboratoires
publics ou privés.

High-gain extended Kalman fFiter


https://hal-univ-tln.archives-ouvertes.fr/hal-01785473v3
https://hal.archives-ouvertes.fr

High-gain extended Kalman filter for
continuous-discrete systems with asynchronous
measurements

Aida Feddaoui, Nicolas Boizot, Eric Busvelle and Vincent Hugel
October 21, 2018

Abstract

This paper investigates an adaptation of the high-gain Kalman filter
for nonlinear continuous-discrete system with multirate sampled outputs
under an observability normal form. The contribution of this article is
twofold. First, we prove the global exponential convergence of this ob-
server through the existence of bounds for the Riccati matrix. Second, we
show that, under certain conditions on the sampling procedure, the ob-
server’s asynchronous continuous-discrete Riccati equation is stable and
also, that its solution is bounded from above and below. An example,
inspired by mobile robotics, with three outputs available is given for illus-
tration purposes.

1 Introduction

The present paper deals with the design of observers for nonlinear multirate
sampled-data systems under asynchronous sampling ] i.e. control systems hav-
ing continuous state dynamics and a discrete measurement procedure. This
situation arises when the output vector of a control system is obtained through
several sensors that do not have the same (possibly non-uniform) sampling rate.
Such systems are often met in practice, for instance in global positioning prob-
lems, as in [33], or in the eld of drone control [10]. Likewise, one can be con-
fronted with such asynchronous systems in the elds of submarine robotics, as
can be seen from [3, 31, 6], chemical engineering [41], or cultivation engineering
[4].

As emphasised in [43], this state estimation problem can be tackled by con-
sidering one of the three following options. First, model the state dynamics
as discrete and apply a known estimator for discrete state systems | see for
example [4] in the linear setting. Second, lift the measurements into the space
of continuous functions, e.g. with the help of a polynomial t as in [41] in the
nonlinear setting. Third, directly consider the continuous model for the state
dynamics and the discrete model for the measurements. This latter option is



the one retained in the present paper, for nonlinear systems, in the framework
of high-gain observers [18].

Considering the design of observers, or estimators, for linear multirate stochas-
tic systems, [43] posed the problem in terms of It6-Volterra equations associated
to discrete measurements, which allowed them to derive a very general optimal

Iter in this framework. Using the theory of vibrosolutions of integral equa-
tions with discontinuous measures, the authors provided an explicit solution
in the form of a Kalman-like estimator. More recently, in [34], the authors
modeled each sensor as a sample-and-hold device and performed a stability
analysis based on Lyapunov-Krasovskii functionals. They also considered the
problem of determining the maximum time interval between consecutive mea-
surements that guarantees exponential stability. It was addressed under the
guise of an optimisation problem in terms of linear matrix inequalities (LMI).
In [28], the authors built upon the ideas of [25, 1] where an already designed
continuous-time Luenberger-like observer was coupled with asynchronous inter-
samples predictors. Finally, the problem under consideration was also addressed
by using multirate versions of the Kalman Iter, see for instance [27, 4, 24, 17].
In particular, in [17], the authors studied the exponential convergence of the
proposed observer and the preservation of observability for multirate systems.
The present article extends this latter approach to nonlinear systems within the
framework of high-gain observers.

In the nonlinear framework, there are many paths one can follow in order
to perform data fusion for multirate systems, as it can be seen from [22]. In
[41], the authors relied on a fully continuous Luenberger-type design where the
missing measurements were predicted with the help of a polynomial interpo-
lation method. More recently, [29] used an already designed continuous-time,
Luenberger-like, observer coupled with asynchronous inter-samples predictors.
Also relying on a xed correction gain, [40] proposed a continuous observer for
multirate systems where the measurements were updated whenever available,
the sensors being seen as sample-and-hold devices. In this latter paper, the
global exponential stability of the observer was proved assuming that the sys-
tem under consideration is under an observability normal form distinct from the
one used in the present work | see [19] for details.

Let us mention two more contributions based on Luenberger-like designs. In
[42], the authors addressed the problem of robust multirate estimation in the
sense that measurements were available in two time scales: fast and slow. There,
the slow measurements were shown to enhance the robustness of the estimation
procedure with respect to modelling errors. For this purpose, the state variables
need to be (locally) integral detectable from the slow measurements. Finally, in
[11], the authors proposed a discrete-time state estimation based on the Taylor
series expansion of the system’s dynamics. The analysis of the proposed observer
follows the ideas of [18] regarding systems that are observable for any inputs but
without using an explicit high-gain parameter.

A multirate moving horizon estimator was detailed in [30]. It relied on a
binary switching sequence in order to model the multirate sampling and predic-
tions of the missing measurements.



Finally, the extended Kalman Iter design has also been considered for mul-
tirate estimation, as it can be seen from [13, 14, 21, 35] where systems having
two time scales were considered. In [10] a multirate extended Kalman Iter was
considered to perform data fusion onboard a small-scale helicopter.

The present paper details the design of a high-gain extended Kalman Iter for
the state estimation of multirate nonlinear systems. Following the ideas of [23,
12, 8, 17] the proposed observer consists of two steps: (i) an open-loop prediction
when no measurements are available, and (ii) an impulsive correction each time
a new measurement is available. This second step is performed according to the
actually measured outputs which may consist of a subset of the system’s output
vector only. The global exponential convergence is proven under the hypothesis
that the system is under an observability normal form | see e.g. [19, 2, 15].
The main di culties are, on the one hand, to deal with several non-uniform
subdivisions of time in order to represent the asynchronous outputs, and on the
other hand, proving that the observer’s Riccati equation is bounded over time.
This latter issue is handled by following the ideas developed in [7], where only
the synchronous setting is considered.

In the present paper, as usual with the high-gain framework, the convergence
analysis is done completely in the noise-free setup. However, high-gain estima-
tors are known for being very sensitive to noise. Since our design is based on an
extended Kalman Iter, which has good noise Itering properties [36], we expect
the Itering e ciency of the Kalman design to counterweight the drawbacks of
the high-gain formalism ] as it is the case in our example in Section 5. As this
might not be su cient, a natural extension to the present work is to consider a
varying high-gain parameter in order to get the best of both worlds, as it was
done in [9, 16, 38].

The remainder of the article is as follows. In Section 2, the system under
consideration is introduced. In particular, it introduces the notion of virtual
sensor in order to take into account measurements that are always available
at the same time steps. The observer proposed for this class of systems is
de ned in Section 3. Section 4 deals with the proof of the global exponential
convergence of this observer. The demonstration heavily relies on the existence
of bounds for the solution to the observer’s Riccati equation. For the sake of
clarity in the exposure, the proof of this result is given in appendix A. It basically
follows the ideas developed in [7], with an increased complexity coming from the
asynchronicity of the measurements that makes this exposure necessary. Section
5 is dedicated to an example coming from mobile robotics. Finally, Section 6
concludes the article.

Notations

A time subdivision f gkon IS meant as a strictly increasing sequence
of real numbers with g =0and ¥ 1 whenk ¥ 1.

Id is the identity matrix with appropriate dimensions, diag[v] denotes a
diagonal matrix whose elements are the elements of v. Throughout the



paper, v can either be a vector or a set of matrices. In this latter case,
diag[v] is to be understood as a block-diagonal matrix.

For a square matrix M, Tr(M) denotes the trace.
R means Rnf0g, and N stands for NnfOg.
If is a set, we denote by j j the cardinality of this set.

w.r.t. is used as the short form of with respect to, and s.p.d. stands for
symmetric positive de nite. Oftentimes, time dependencies are omitted to
make the notation less cluttered.

For a time varying quantity x( ) evaluated at time , we use the notation
Xk = X( k). At times , correction steps are performed. At such times,

the quantity x( ) is denoted xﬁ ) before the correction step, and xﬁﬂ
after.

Let us consider a product c%f time varying quantities (having appropriate
dimensions) of the form: x ( )S( )x( ). Then, at time , the notation

)
X Sx . is the short form of xﬁ )Oslg )xﬁ ),

2 System under consideration

Let ( .) be a nonlinear, observable, continuous system under the following
observability normal form | see also [16, 19, 39]:

C
()= A(u( )x( ) +bx( );u()) with x(0)=Xo
y()= C()x()
The state variable x( ) lies in a compact subset  of R"; the output y( ) is in

R" and the input vector u( ), which belongs to Uaggmm  R™, is bounded for
all times. The state variable is decomposed into ny subvectors as follows:

(o

O 1
X1( )
x()=8 :
Xny ()
Were, for all i 2 f1;::5;nyg, xi( ) is in the compact subset ; R™ (and
i”:Vl n; = n). Each subvector x;( ) is associated to the it output y'( ) and is
written o, .1
X ()
xi()= 8 :
X ()

The dynamics of xj( ) are described by:

xi() Ai(u( )xi( ) +bi(x( );u())
y'Q) C'u( Nxi()



Ai(u) and Ci(u) are, respectively, (n;;n;) and (1 n;j) matrices of the

form
OO a?(u) 0 1
_go 0 g i — a1
Aj(u) = and C'(uy= aj(u) 0 0
- A )
0 e 0 0

where, for all i 2 1;::5;nyg, j 2 f1;::5nig, U 2 Uagm, 0 < am < ja{ (wj <
am - Moreover, we suppose that the elements of the C' matrices are dif-
ferentiable at least once and have their derivative bounded over time?.

bi(x;u) is a C* triangular, compactly supported, vector eld whose last
component is allowed to depend on the full state of ( .):

b} (i )
b? (x}; XZ; u)
bi (x; u) = :
b (xE; i xM tu)

b (x; u)

We assume that the Jacobian matrix Dyh(x; u) of b(x; u), computed w.r.t.
X, is bounded from above by L, > 0. Therefore, b(x; u) has the Lipschitz
property w.r.t. X (uniformly w.r.t. u): kb(x;u) b(z;u)k Lpkx zk.

Finally, the full dynamics of system ( ) are given by

o 1
by (X; U)
A(u) =diag Ag;:: A, b(x;u)zg : 531 and C(u) =diag C%;:::;C™
bny (X; U)

To this plant, we associate the following continuous-discrete system with
asynchronous, or multirate, measurements

C
x()= AU )Ix()+Dbx( )u()) with x(0)=xo

( acd)
y()= C x()
Contrary to what was proposed in a previous work [17], the asynchronous
measurement procedure is not modelled with respect to each output. Instead,
we lump together outputs always available at the same time.

1Although restrictive, this condition is necessary in order to apply Lemma 13 to a time
varying matrix C.



1. Let a sensor be a non-empty subset s;  f1;:::;nyg. It is associated
to a vector yO( ) = yi( ) : j2s; . There are ng sensors, with 0 <
ns ny. In this work, we assume that the set of all sensors of ( acq) IS

is made of consecutive indices. Indeed, this can always be achieved via a
simple re-ordering of the output and state variables.

The (jsij n) output matrix corresponding to a sensor s; is denoted C (9
and is such that yGD( ) = CGdx( ).
n o
2. A subdivision of time sﬁ') N is associated to each sensor s;, and the
global time subdivision f xgkon is de ned as:

n (_)o
1
T kOkon == S
. 12N
i=1
n o
where elements belonging to several subdivisions s,(')

only once.

are considered

3. For each | there exist at least one sensor s; such that s,(i) =
index I. Let  denote the set of such sensors:
n

_ o
k= i2FL:nsgj9 | 2 N such that s& =

k for some

The above mentioned | index, probably di ers from k, and is not the same
from sensor to sensor. As such, foralli 2 , IS) denotes the index | 2 N
such that s,(i) = K

The matrix C , associated to the set  is the Piz Jsij - matrix

made of the C (1) matrices that correspond to the output actually available
at time :
(0] 1

C.= gc(si)§ and thus yx =y( k) =C . X( k)
: i2

3 De nition of the multirate high-gain Kalman
Iter

The continuous-discrete asynchronous high-gain Kalman Iter is de ned in two
parts:

1. two prediction equations when 2 [ ¢ 1; k[, k 2 N, with initial values

(+) ).
z, 7 and S 7,



2. two correction equations at time .
Notations:
z( ) is the estimated state for all 2 [ x 1; «[;

Z|£ ) is the estimated state at time k, at the end of a prediction step and

before a correction step;
(+
Zy

(+

Zy

) is the estimated state at time k., after a correction step. Therefore,
) is the initial estimated state of the new prediction interval [ ; k+1].

Prediction equations

z( )= Az()+b(z;u)
S()= (AU)+Dybz;u))’'S() S()(A(U)+Dxb(z;u)) (SQ S)()
(01)
Correction equations '

g +) ) + ! > DUNNEOE 5() (si) ) O)
gzk — Zk Sk C(S|) R i C(S')Zk ykl Sl(i) Sl(i) L
i2 i Kk Kk

X 0 N1, - .
g g0y T e gey e @ O
= Ok k @ Sy
i2 K K

(O2)

In other words, the correction at a time , is made with respect to each
measurement yff‘) that is actually available and involves a weighting factor
equal to the time elapsed since the last time this speci ¢ output was measured.

The matrices Q and REY [ which can be time dependent? provided the

constraints (1)-(2) below are met | are of the form
Q= !0 ! and RO =1 GORGN 6D

where

Q and RGY are s.p.d. matrices, of dimensions (n  n) and (jsij  jsij)
respectively which must lie in compact subsets such that:

gld Q gld with 0<g<qQ )
r;ld RGD rild with 0<r;<T; 2
) and  are both diagonal matrices whose construction relies on the
quantity n = max(ng; nNz;:::;Np,) and on a xed scalar 1
=diag ;:::; n,  where i = diag nln_;:::; nll
hn oi

and GV =diag " ™ :j2(si)

2This time dependency is not explicitly written in the observer’s equations to make the
notations less cluttered.



equivalently, if one de nes =diag ©;:::; Gns) : R =1 R .

The initial datum of the observer is made of the initial estimated state z(0) 2
R" and of S(0), a s.p.d. matrix.

Remark 1. 1. When equals 1, the proposed observer can be seen as the
nonlinear version of the continuous-discrete Kalman Iter. In this context,
the time ponderation in (O) is unusual. However, this time ponderation
is critical in the proof of convergence. In fact, (O,) corresponds to the
discretisation of a continuous extended Kalman Iter, but performed with
respect to the asynchronicity of the measurements. As such, the scaling
factor is necessary so that equations keep a mathematical meaning when
the discretisation step goes to zero.

From a practical perspective, this time ponderation prevents from giving a
too high weight to high-frequency measurements compared to low-frequency
measurements.

2. The two matrices Q and R , built according to the normal form of an

observable system, constitute the high-gain formalism. The xed parameter

is the so-called high-gain parameter. When =1, the proposed observer

is a simple extended Kalman Iter for which the normal form allows to
prove local convergence only | see e.g. [9].

Although out of scope of the present work, a worth mentioning issue is the
study of methods that allow to de ne and run the observer in the original
coordinates of the system instead of the normal coordinates. Interested
readers can refer to, e.g., [5, 26, 37] and references herein.

3. Although the de nitionsof and may appear uselessly intricate, they are
necessary in order to simplify forthcoming computations, in particular by
preserving the Lipschitz constant of vector eld b(x; u) despite the change
of variables performed at the beginning of the proof of convergence (cf.
Sec. 4).

4. According to Equation (O;), R cannot be any s.p.d. matrix. It is in fact
a block diagonal s.p.d. matrix, each block corresponding to a sensor. In
[17], R was a diagonal matrix and the approach less general. Here, our
de nition of sensors allows us to consider correlations between potential
measurement noises that corrupt measurements given by the same physical
Sensor.

5. In the framework of high-gain observers, matrices Q and R are viewed as
tuning parameters because of the in uence of and the noise-free setup.
However, in practice, these matrices can be chosen based on the noise char-
acteristics in order to re ect di erences in scales or correlations between
potential measurement noises, see for example [39].



4 Convergence of the asynchronous high-gain
Iter

Theorem 1. Consider ( acq), @ continuous-discrete system with asynchronous
measurements obtained from an observable nonlinear system ( () under the
assumptions presented in Section 2.

Let x( ) 2 R™ and y( ) 2 R™ be the state and output vectors of ( acq).
Let ns 1 be an integer such that y( ) is made of ng sub-vectors. For a given
I 2 f1; 115 nsg, the dimension of the corresponding sub-vectgy of ¥( ) is denoted
n; and a, possibly non-uniform, subdivision of time denoted sﬁ') N tells when

a measuremgnt ig,actually available. For each i, let t® denote the maximum

step size of SS) N
N

The asynchronous high-gain extended Kalman Iter based on ( acq) is given
by (O:1-0O3), whose state is denoted by z( ) 2 R".

Then, for any xed T > 0, there are positive constants K, Kz, K3, ¢>1,
and ;, fori=1;::ng, suchthatforall > gand t® < ;, one has for all
T.
2 T T % 2 Dgoke K( T
kz( ) x()k z — X — Kqielt2z s 3)
wheren = max fn;g.
i2fl
Remark 2. 1. As it can be seen from (3), must be high enough to ensure
the negativity of K; Ks.

2. The exact expressions of K;, K, and K3 appear at the end of the proof,
in (11). Also, those quantities depend on T.

The proof of this theorem relies on the analysis of the dynamics of the
estimation error: "( ) = z( ) x( ). In the following, it is divided into two
parts: the preparation for the proof, and the exponential convergence.
Preparation for the proof

Let us rst consider the change of variables x = x;z= zand * = ".
We also denote Bi(;;u) = b( 1:;u), DkB(;;u) = Dyxb(  ;u) 1
s 1

Lemma 2. [19]
1. The vector eld b(>¢; u) has the same Lipschitz constant as b(x; u).
2. The Jacobian Dxb(x; u) has the same bound as Dxb(x; u).

3. We also have the following relations:



A= A ,andA = IA;
(si) 1C(Si) 1 - C(Si);

1ICEPRED o6’ 1= cERED o,

This change of variables allows us to remove the -dependency of the matrices

RCY and Q . With the help of the relations given in Lemma 2, the observer’s
equations (O1)-(02) become:

8
<z()=  AW)z()+D(zu) o
0
:S( )= AU) +Dub(zu) S S A(U)+Dub(zu)  SOS (©1)
8
S|£+) ' cEN’RE) o) Zﬁ % k) S|((ii)) S|((ii)) 1
i2 K K (02)
< _ _
%sﬁ): RN CONCHRC) S S0
i2 k

In order to proceed with the proof, we want to be able to bound all the
elements of A(u) + Dxh(z; u), independently from . This is true for the lower
bound since 1, but not for the upper bound. This issue is resolved with the
help of a time reparametrization.

Lst Pesuchthat = . This leads to a change on the subdivisions f kgkan
and sﬁ') on forall i 2 f1;:::; ngg, as follows: ¢ = g, and sﬁ') = sﬁ') for all
k 2 N. Henceforth, variables z, %, *, S, u are denoted z, x, ", S, u (respectively)
when expressed in the time frame Ji.e. z( ) =2( ( )) = 2( = ). Also, the
notation zl(:)nbeag the same meaning as before, but w.r.t. the subdivisions
f and s .

kOk2N K o

In this new time scale, the observer is given by the set of equations (O,)-
(02):

8
220 = a@e()+ 1)

=ds( )

5 = A(u) + IDyb(z;u) OS S A(u) + IDyb(z;u) SQS

(01)

+ + . N1 ) . .
520 = 70 s CEMRED TCED 20 x(y)  sG) sO |
i2 i K K

> o

ZsW = s+ ceReD cen O 0

- . ¢ I 1
i2

(02)

10



Exponential convergence

The rest of the proof is based on a Lyapunov function argument, the candidate
function being V (") = ("’S")( ). Provided that S( ) remains s.p.d. then,
V(") > 0 for all " & Orn. In the sequel, after stating a theorem that ensures
the stability of the matrix S, we compute the time derivative of V (*') in order
to display the exponential convergence of the proposed observer.

Theorem 3.
Let us consider the asynchronous, continuous-discrete, Riccati equation of
observer (01)-(0), that is to say, with A = A(u) + 1Dxb(z; u):

8
350 = a5 sa SQS
(d+> T IR P R N N SO 4)
=S5’ = S+ CEI'RED “Ci S S 4
i2

Where (A;C) is a time-dependent observable pair.

We assume that all the elements of the matrices A and C belongs to L1 ([0; T]; R),
and are uniformly bounded w.r.t. the L1 norm by some positive scalar B > 0.
Moreover, all the elements of C are di erentiable at least once and have their
derivatives bounded over time.

Then, S( ) is well de ned and it is s.p.d. for all times. Moreover, for all
T > 0, there exist cnstants i > 0; i2fl;:;;ngg,and 0 < < , such that,

for all subdivisions s(ki) k2Nwith SS) ss)l i, we have:
Id S() Id for all T

The constants and  are independent of and the shape of the subdivisions.

Proof. The proof is detailed in Appendix A. O

Let us now resume the convergence study with the computation of div ":

CO = Je 00=A0+ oy bexw ©)
av .. d("'s™
O = =20

= 2 wg B(z;u) B u) Dyb(z;u)" "sQs* (6)

Next, we determine the expression of Vk(+) li.e. V( k) after a prediction step:
..ﬁ+) — ,2,;(:—) X( k) ,
=< ) .
— (+) * D E=~IC) i Q) 0) u( )
= 1d S CEIRED “c6) SO S® gk
i2 k

11



On the other hand, in , we have:

0
= (7 sM oaMm+ms?Y MmO )
where
X . . - .
_ . ; ; 0) 0) _ () )
M__z CEYREGH Tl SIE) Sl(k” ) =Sy Sk 8)
1 k

In (7), the matrix M is replaced by the right-hand side of (8). Simpli cations
lead to: i

h iq
@ () () e )T Ta()
Vk - kK Sk Sk Sk Kk
Using (O,) again allows us to write:
i > #
1 1 1 A A 1
s 'S8 = 80T 00w T ceRe el s@ s® 50
i2 Kk K
= g()'igO? XC(si)°R(si) HO S O ORGP,
k k I(kl) I(kl) 1 k
2
— {z }

@)
Before going any further, let us remind the matrix inversion lemma.

Lemma 4 (Matrix inversion lemma).
Let M be a s.p.d. matrix and R an invertible matrix. then

M+MCR Icm) =Mt Cc(R+cCcMC) C

In order to use this lemma, it is necessary to express the sum of matrices
that appears in expression (?) as a product of matrices. First, let us denote:

hn oi

R, ,=diag RCY:i2 , andl , =diag SE‘)) sl(fi(‘)) L 1d:i2

Then the sum in (?) can be expressed using the block matrices:

10 oy 1 R i i
CGE'REGD oG Sl(éi)) Sl(éi)) L= COkR kll «C
i2

By de nition, |

. is invertible and using® Lemma 4:

h 1 L] h 1 1 1i 1
IR MR = sy’ +s{’ c RN C.SY’

1 1
1 +c 8¢’ ¢ c

st) ¢ R, «

kl do commute. Indeed, by de nition, each blocks of R

made of an identity matrix times some constant parameter.

3Note that, matrices R . and |

correspond to a block of | kl

12



Therefore, we obtain the following system, for all k 2 N:

Edv (M= 2("S)b(z;u) BO;u) DkKb(z;u)] (*SQS™)  for 2[k 1 kI

0 1 1
-vk(+)_ ¢isme ) e, R r+cC st e, e ) for = g

k

Since B(:; u) is Lipschitz in its rst argument (uniformly w.r.t u) and DyxB(:; u)
is upper bounded:
kb(z;u) B(x;u) Dyb(z;u)"k Lpkz  xk + Lpk"k
= 2Lpk"k

Theorem 3 provides bounds for S for times greater than a xed T > 0, and the
constraints on Q are given in (1), thus leading to:

av 4 e
3O g (s
Since S( ) is positive de nite, the derivative of V (") is negative for chosen

4 ,
such that ——L, g < 0. Furthemore, we easily show that Vk(+) Vk( ) for
all k 2 N. Indeed:

+) __ ,,0 0
VP =v ke R vC, ‘
| {z }

Since S( ) and R I kl are s.p.d. for all times, then the matrix ( ) is at least
positive semide nite and:

v = (s (9sm) ) forall k2N ©)

This shows the asymptotic convergence of the observer. Moreover, this conver-
gence is exponential. Indeed, let [} = rknzllr\} k: k>T ,thenfor 2]JT; [[:

z
($() = SN+ oL g (7S
(--OS--)(T)e(Lbif QC T (10)

where (10) has been obtained by using Gronwall’s lemma.
For 2[ k; k+1[, inequality (10) is true with  replacing T. Then, using rela-
tion (9) we show by itegatiop that (10)ﬁs in gict true forall > T, independently

from the subdivisions sﬁ) N and k .
Since "( ) =*( ), then mequallty (10) becomes

2
KO2 - Tl oD foran >

13



Finally, following the de nition of "( ) = % ),sincek 'k ™ 'and
k k 1, we conclude that

2
k(e 20 oo e T 0 D a1 ()

5 Hlustrative example

Let us consider a boat* moving in an area delimited by two beacons (denoted
by A and B). The state of this system is X = (X1; X2; )0 2 R®, where as it is
schematised in Figure 1a, (xl;x2)° 2 R? is the position of the boat w.r.t. the
reference frame attached to A, and 2 R is the orientation of the boat, that
is the angle formed by axes X and XP? | this latter axis de ning a reference
frame attached to the boat.

Both beacons emit a signal that is detected by an onboard rotational position
sensor. This sensor consists of a rotating oriented cavity that guides the signal
to the actual electronic sensor. Therefore, the signal emitted by a given beacon
is detected when the oriented cavity is aligned with the boat-beacon line®. This
mechanism provides a measurement of the angle formed by axis X? and the
boat-beacon line. Furthermore, we assume that the signal received from A also
provides the distance between A and the boat.

The dynamics are simply modelled by the following control system:

8

=x1( )= v()cos( ())

X2()= v()sin( (1)) ( Boat)
T.0)=u()

where u( ) and v( ) are the controls.

In order to deal with simple equations for the output vector, the system is
rewritten using polar coordinates w.r.t. both A and B | cf. Figure 1b. Let xg
be the abscissa of B in the (X{; XJ) reference frame. Then, the angles 1, »
and distances 1, » are such that:

X3 = 1c08( 1) and X2 = psin( 1);
X3 =Xg + 2€08( 2)and Xp = 3sin( 2).

In those new coordinates, the full dynamics, with output vector y(t), are

40r a wheeled mobile robot.

5Boat-beacon line: the line that passes through (x1; xz)0 and the center of the concerned
beacon.

14



S S i
A o~ @, :
(2) Notations (planar representation). (b) Notations (polar representations).
Figure 1

given by
8 v o
= —=SIn
%‘1 coaene o1 0 1
1= vecos( 1) N +
2= sin( 2) and y()=@ A=0 A (12)
% = vecos( 2) 2 + 2

= u

With the help of system (12), the original system ( pgoat) is Observable since we
can nd a change of coordinates that puts ( goat) Under a normal observability
form Ji.e. system (13). Actually, the exact position of the boat can be com-
puted from the knowledge of » 1 and 1. The orientation of the boat can
then be easily deduced. However, without both angle measurements observabil-
ity is lost. Since the rotational position sensor makes the angle measurements
asynchronous, it makes this example appropriate.

The outputs of System (12) are decomposed into two sensors having non-
uniform sampling times: s; = f1;2g and s, = f3g . Indeed, times when the
rotational cavity is aligned with a given beacon depend on the state of the boat.

In order to apply the asynchonous high-gain Kalman Iter under discussion,

we put (12) under the normal observability form below by de ning z( ) =y( ).
vsm(z ) 1

z
lA g v cos(zl) (13)

v sin(zs)
(2122, 23)

P . . .
where (z1;22;23) = z2c08(z3  z1) + XZB z3 sin(zs  z1) is the expression
of , (as a function of » 1 =123 2ziand i = 2zy) obtained through the law
of cosines.

15



We considered the boat trajectory shown in Figure 2a. Here, the boat’s speed
(i.e. v()) is kept constant except for 2 [5;10] where it is momentarily raised
to a higher constant value. The initial state of system is x(0) = (1;6;1) and
the initial state of the observer is directly set in the normal coordinates®. The
Riccati equation’s initial datum is set by solving an algebraic Riccati equation
using the informations available at time t = 0.

The estimated trajectory, compared to the actual boat trajectory is shown
in Figure 3. Figure 3a highlights the increased convergence speed due to a
large high-gain parameter. Let us remark that when the high-gain parameter
equals 1, the displayed observer fails to achieve convergence. Figure 3b shows the
performance of the observer when additive noise is introduced in the output. We
used a gaussian noise’ colored through a rst order discrete Iter, as illustrated
in Figure 2b. Because of the known sensitivity of high-gain observers with
respect to noise, only the lower value of the high-gain parameter was considered
in the second experiment. This tradeo between convergence e ciency and
robustness w.r.t. measurement noise could be further investigated with the use
of an adaptive scheme for the high-gain parameter in the spirit of [9, 16, 38].

s
N o N & o
T

starting
X2 ”[ position

o @ (O]

. . . ,
) 5 10 15
X1

(a) Boat trajectory showing the position at (b) System’s output signal with additive noise.
sampling times. The markers highlight sampling times.

Figure 2: Informations relative to the rst (resp. second) beacon appear in red
(resp. blue)

6As a consequence, the initial guess lacks consistency w.r.t. the problem’s physics which
makes the task harder for the observer.

“Having its standard deviation equals to 0:1 for the angle measurements, and 1 for the
distance measurements.
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T T
— = Actual trajectory — — Actal tajectory

Estimated trajectory with high-gain setto 3 | | ——— Estimated trajectory with high-gain set o 3
Estimated trajectory with high-gain set to 15 10+

7L

6L 4
Xp | starting

5 | position

6l ¢
starting
5| position

X1
(a) Trajectory estimation without measure- (b) Trajectory estimation with additive noise
ment noise. on the measurement | cf. Figure 2b.

X1

Figure 3

6 Conclusion

In this paper, a high-gain extended Kalman Iter for nonlinear continuous-
discrete systems with multirate sampled outputs has been presented and its
global asymptotical convergence, proved. The proposed design consists of two
steps: (i) an open loop prediction when no measurements are available, and (ii)
an impulsive correction as soon as hew measurements are available. To this end,
each correction step involves a weighted sum of the output errors calculated on
the basis of the measurements available at this sample time. In order to better
handle possible cross-correlations between measurements always available at the
same time, sensors are de ned as subsets of the output vector. Moreover, the
Riccati matrix of the observer is shown to be bounded from above and below
provided that ( ), the underlying continuous system, is observable and for
small enough sampling intervals.

Some improvements are left for the future. First of all, as it is illustrated in
the example, the well known sensitivity of the high-gain design to measurement
noise could be addressed with the help of an adaptive scheme in the spirit of
[9, 16]. An approach taking into account several high-gain parameters instead
of one only (i.e. one parameter per virtual sensor) in the spirit of [38] is another
possible extension to the present work. The present study can also be conducted
in the framework of hybrid systems, cf. [20], as is it done for synchronous hybrid
systems in [32].

Finally, the presence of redundant sensors can lead to an improved version of
the proposed design. Indeed, the maximum step size condition on the time sub-
division of a given sensor could be relaxed provided there is an active redundant
sensor | for example in submarine robotics the vehicle’s speed available from a
surface GPS is lost when the robot dives but can be obtained again (computed
with respect to the ground) via a Doppler velocity log.
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A Bounds for the solution of the Riccati equa-
tion

This section is dedicated to the proof of Theorem 3. It follows the structure of
[7] where a similar result is proved for synchronous continuous-discrete systems.
Although the present proof shares the same structure, di erences speci ¢ to
the asynchronous setting make this exposure necessary. However, only proofs
having notable di erences are detailed.

The complete argument of Theorem 3 is divided into two parts.

In a rst part, for a given T? > 0, we prove the existence of an upper
bound for times greater than T?. Here, the argument mainly relies on the
regularity of S, and the bound depends on the maximum step gize gf the
subdivision,  xgkan regardless of the underlying subdivisions sﬁ') N’
2N
In a second time, we prove the existence of a lower bound for times greater
than T» > T?. In this second part, the result relies on the observability of
the underlying continuous system (¢, angl requires small enough maxi-
mum time steps for each subdivision s(k') on'

N

The quantity T that appears in Theorem 3 is simply T = T-.

In the following, we assume the existence of a positive de nite solution S( )
on a small interval of time, which is ensured by the Sylvester criterion. We later
on show that this interval of time is actually R*.

A.1 Upper bound

In order to prove that SS) is upper bounded for times greater than T?, we
should remember that if S is a symmetric positive semide nite matrix, then we
have S  Tr(S)ld:

Lemma 5. [7].
Let S:[0;T[¥® S, be a solution to ‘3—5 = A'S SA SQS, then for almost
all 21[0;T[:

| g a= _min(Q)

R 2 " :
G Tr(S)  a(Tr(S( ))*+2bTr(S()) where _ b=sup Tr AY()A() °
Lemma 6. [7].

Let a, b be two positive constants. Let x : [0;T[® R™ (possibly T = +1)
be an absolutely continuous function satisfying for almost all 0 < < T the
inequality:

x()  ax?( )+ 2bx( )

The roots of aX? +2bX are % and 0. The solution x( ) is such that:

18



x() max x(0);2 forall 2[0;T[

In addition if x(0) > %b then for all > 02 [0; T[ we have the two inequalities:

2h 2b 1
X3 e 1 (1)
2bxoe2P
x( ) 2 (15)

axp(e?® 1)+2b

0 . .
Letus denote r =sup Tr COED'RGD "CG) | According to equation (4)
ik

and to the previous lemmas, upper bounding S turns into proving that x; ’,

solution of s

= & = ax2+zg>é
N T (16)
- i2 1 DY

is bounded for all > T7?; k 2 N, independently from the chosen subdivisions.
It leads us to Lemma 7.

Lemma 7.
The solution of (16) is such that:
x( ) 2 + & 1 +ngr
a ae®» 1 °°
for any >0, before or after a discrete step.

Proof. Bound (14) gives:

> . .
) 2b 2b 1 (0} (i)
! a ae®: 1" SO SO
i2 1
X X G o
We denote g =r sl(ki) S'ff) L and the previous inequality trivially

j=1i2
becomes

2b 2b 1
x{ P Tl 17

We remark that (17) leads to the inequality below:

() M D 1
X1 a+anbl 1+nsr1 (18)
Let us now generalise this last inequality for all k 2 N. However, in order to do
S0, it is necessary to manipulate inequalities shaped as (17) instead of (18). Let
us now rewrite bound (15) as follows:

WO 2 2 X" _ obx{Pez w)
2 a aX§+) e2b(2 1) 1 _,_%b ax ed(2 1) 1 +2b

(19)

19



We want to replace x§+) by the upper bound found in (17).
Let us de ne the function

whose derivative w.r.t. X is
e?® 2b ax(e® 1)+2b a(e® 1)xe® 2b
[ax(e2> 1)+ 2b]?
2 (2b)2
[ax(e?® 1)+ 2b]°

h'(x)

Since the derivative is positive for all > 0, we can replace x§+) by its upper
bound in (19):

NG 2b 20 B+ 2eit d 2
{ 22
a a[ng+2gb92b11 7+ 1]z v n+2
2b+2b2b 1 1
a aaed: 1[%’+%’82b+1+ ]2 1) 1)+2£
+—h it
LR Rmr a1 @0 0 DR

We lower bound the denominator of the last term with:

and the denominator of the second term with:
We also simplify (2b=a) in those two terms:
) b 20 1 1 .
2 a  ae®r 1(l+ i)z 0 1+1)
1

2b . 2b .
g Eezb 2 e2b 14 e2b 1 1 1

Thus we have:

> ] .
v 2 1 ORI
X5 a + aeds 1 + 1+ . S|§‘> Slgi) 1
1 2
2b + 2b 1 +
a  aedz 1 2
1
) _ < : )
with 2=7T S((Ii)) S((Ii)) + s((Ii)) S((Ii))
_ ORTORP IO O
i2 1 i2 2
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Let us notice that for i 2 1;s|(2) = 4, fori?2 z;sﬂ?, = , Jand so on
1 2
and so forth forall i 2 k;k 2 N;sl(('i)) = k. At time », for a given sensor s;, i

k
belongs to one of the four following subsets:

1. 1\ >
2. 1n >
3. 2N 1

4. f1;:nsgn 1n o
We consider rstthecasei2 ;1\ », then:

let ” bede nedas $” =maxfl 2N suchthat s® g, thus § =2

recall that indices I‘((i) are such that

k= i2FL:n0j9 1P 2 N such that Sn(é)) ~ ok
then, s =50 = 515 | =50 =50 = sand s =G = o=
2 2 ' ' i
0

The contribution of sensor s; to 5 is of the form:

=
O O O _ O
s So, *Se Se, =T ST
j=1

In the same way, and dealing withani2 ,n i, we nd:

) — ()N () [ (O N ()
5 =1, S|gi) =s;’ = »; and S|;‘> =S =0

In this case, the contribution of sensor s; to » is of the form:

=
() M — (O] Q)
Fso S0, =T Si7 Sitt
j=1

By proceeding this way for all the other cases, we nd that the contribution of
sensor s; to is always of the form:
=

NORINO

j j 1 (20)

j=1
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X

and , can be writtenas ,=r s}i) s}i)l rns ,. Therefore,
i=1j=1
i
X
) b 2 1 OO
X5 2 + 2ed: 1 +r Sj Sj 1 (21)
i=1j=1
2b  2b 1
+t o, tIMs 2

a aedz 1

We can generalise by induction (20) and (21) to any k 2 Nn f0g. To do so,

we de ne S) = maxfl 2 N such that s,(i) kg and, when S) =0, we use the
(i)
convention (s}i) s}i)l) = 0. This yields
i=1
X > 2
K=T sl(:i)) sl(('i), L =T P sV gy (22)
j=1i2 « K k i=1j=1

d x 2b . b 1 N
an Xk E Eﬁ rns k-

Moreover, we can generalise this inequality to any > 0, before and after
an update.

2b  2b 1
x() §+§7e2b 1+rnS O
Lemma 8. [7]
Let us de ne the functions
() = 2b + 1 +Nngr
T a 2% eZb2b 1 °
Xp€
= +
x( ) axo(e?® 1)+2b Ns '

There exists >0, and  (Xo) > 0 such that ( ), respectively x,( ), isa
decreasing function for 2]J0; ], respectively for 21[0; (Xo)].
Moreover the bound  (Xg) increases as Xg becomes large.

Lemma 9. [7]
Consider the Riccati equation (4) and the assumptions of Theorem 3. Let
T?>0be xed. There exist two scalars , >0 and > 0 such that

s& ,id
n o
for all T? k, K 2 N, for all subdivisions sﬁ') , T kOkan such that
k 1< . This bound is also valid during prediction intervals.
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A.2 Lower bound

We now prove that S( ) is also lower bounded for times greater than a xed
T’_) > T?.
Lemma 10. [7, 19]

Let S:[0;T[¥ S, (possibly with T = +1) be a solution of

ZTS: A’()S SA() SQS

then, forany 2R ,forall 2][0;T[:
S()=e ~a( :0)So7a( ;0)

e (V) s SWBM gy
0
(23)
C d”a( ;s) 0
where *,( :s)issuchthat: g - A ()7a(:s)
7a(s;s) = Id

Lemma 11. [7, 19]
Let S: [0;e(S)[¥ Sy be a maximal positive semi de nite solution of

dis = A'S SA SQS
If S(0) = Sy is positive de nite then
e(S) =+ and S( ) is positive de nite for all 0.

Remark 3. As a consequence, the solution to the asynchronous continuous
discrete Riccati equation (4) is positive de nite for all time, and Lemma 9 is
also valid for all times. In the rest of the present section, we show the existence
of a lower bound of the form 1d, for some positive scalar

Following Lemma 10, and fora xed >0, S§+) is written:

S§+) =e 74 1;?50’;( 1;0)
1

+ e (1 V)’a( l;v) S(V) w ’(;( 1;V)dV
0
< . . .
+ cEIRGD oG SI((I‘)) Sl((li)) . (24)
i2 . N t
At time », the formula yields:
si=e (2 Vra(a DS{7 702 1)
2 0
+ e (2 V7,(2v) S(V) SMQS) 7 o( 2;v)dv

X . -
+ 7 colRo e sQ s
2, 1§ I 1
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Replacing Sf) by the expression obtained in (24) leads to:

sV =e 7 2,0)S0 7 a( 2;0)

2 S(v)QS(v
+ e (2 V)’a( Z,V) S(V) ( )Q ( ) ,;( 2,V)dV
0
=< . i
+e (2 D7 (5 ) CE'RED "D S|(<Ii)> S|((Ii)) 1
i2 * B
> - )
+ CEREY ey @ (O
2, 1O IO
We iterate this procedure in order to compute Sy (+) for any k:
si)=e Zk’a( ki 0)S0”a( ki 0)
K S S
e oy sw SUBEY i
0
KX (x D> )'RGD T’ )
+ e ko317 (ks j)C RS CCBIT (g j) Sl(i)
j=1i2 ; E

This last equation is of the form Sy (+) = (1) + (11) + (111), in this order.
(1) Since Sy is positive de nite, (1) is at least positive semi-de nite.

(I1) Letuspick > q,then S(v) SMRSM) g positive de nite, and (1)
is at least positive semi-de nite.

We now concentrate our e orts on (I11) since it is the quantity that is actually
bounded from below for all > T?.
Let us de ne®:

1. thetime 0 < < | such that =T5;

2. the index M as @ =maxfl2N: s,(i) g which always exists as soon
as k=>To.

Then, we use relation (22) that appears in the proof of lemma 7 to rewrite (111)
as
(i)

3 X ® _ . o
() = e kOSpToe k;S}I) CGE)'REH 1C(Si)’0a k;sjgn) S’ng) SJ§I)1
i=1j=1

8 is de ned w.r.t. k |Jsince we need our relations to remain valid for any  large

enough | and should be understood as k. This latter notation is however not used for
readability reasons.
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Since all the terms of the sum (I111) are symmetric positive semide nite matri-
ces:
ONN i 0 ey T (i) o0 ; i .
() e KUty s cERED Teensls® SO O
i=15= 4y

From the properties of the resolvent ”,, the above inequality can be rewritten,
witha( )=a( + ):

O]
> 10 i 0 . .
(1 e <% . o s CcEYRED el s® 55
i=1:_
Jj= "+l

If we denote by ; the maximum time step of a subdivision sk Ko We notice
®

that e * % e (* . sSince R | is de ned in a compact subset,
therefore, we need to nd a lower bound for the following expression:
< X

=t S R RPC P RO
i=1j= My k K K

Let us rst rede ne the subdivisions as follows:
we denote Q}i) = sj('i o with & =0 for all i 2 f1;:::; nsg;

each new subdivision fé}i)g has k'’ + 1 elements, with k

Hence, QS()D = s(i()i) for all i 2 f1;:::;nsg;
k

® ®»_ O ®
K .

Sn e}
é}') , where elements be-

we denote the subdivision 49 by 49 =
i
longing to several subdivisions are considered only once.

Thus, we can show that (111) has a lower bound if we can prove that

>R . . . o
o To §Jgl) cE)'cls) o gjgl) gjgl) gjgl)l (26)
i=1 j=1

n o
has a lower bound for all subdivisions g and 91@ ; 12 f1;:::; nsg, having
a maximum time step size denoted by ;.

Let us now de ne 4( ;s) = ~,%(;s) 0, which is in fact the resolvent of
system x = A( )x( ). Since a( ;S) = ,(s; ), we can rewrite (26) as follows:

Gacd(T2) = ; g}'); T, C (Si)OC(Si) a g}'); T, 9](') gj(') L (27)
i=1j=1
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We call this latter quantity the asynchronous continuous-discrete Gram ob-
servability matrix associated to a time T? > 0. It is actually the key object
that allows us to lower bound the Riccati matrix Sk. In the following we show
that, provided the time steps are small enough, G,cq(T-) is as close as needed
to the continuous time Gram observability matrix. To do so, we need the two
following extra lemmas.

Lemma 12. e.g. [19]
Let 4( ;s) denote the resolvent of the following time-dependent, observable,
system:

x = AC)X()
y() = Cx()

where all the elements of the matrices A and C belongs to L™ ([0; T];R), and
are uniformly bounded w.r.t. the LT norm by some positive scalar B > 0. For
a given T > 0, the (continuous) Gram observability matrix is de ned as
Zr
Ge(T)=  (viT)C'C a(viT)dv (28)
0

Then, there exist positive scalars 0 < a < b depending on B and T only,
such that
ald G¢(T) bld

Lemma 13.

Let m(t), t 2 [0;T], be a (n n) symmetric matrix, at least di erentiable
once.
Let be a positive constant, and T jgjon an arbitrary subdivision of [0; T] such

that i1 , forall j 2 N, with ¢ =0 and , the maximal element of
the subdivision such that T K . We suppose that all the coe cients of m
have their derivative bounded over time.
Then

Zt

*
m(v)dv m(p)(; 1 (KT+L)Id

0 j=l

where L = supkm( )kz, with k:k, the matrix norm induced by the euclidean

2
column of the matrix mo( ).

n .
norm, K = = max mi;,( ) , with ml;,( ) the element of the k™ row and It

Proof. The proof of this lemma is mainly based on that of Lemma 3.11 in [7],

with small di erences discussed in Remark 4 at the end of the present section.
Let M(t) be a primitive matrix of m(t), that is to say a matrix whose

elements are the primitives of the elements of m(t). We have the identity

Zt S Z

, m\v)dv=M(T) M(0)= M(;) M DI+ m(v)dv
j=1 0
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Zy

0

We can apply the Taylor-Lagrange expansion on each element My;:

- - 2 0
Mia(i )=Mia(i)+Ci 20 Dma( i)+ %mkl( KI:i)
where i 2 [ i 1; il: We have thus, the relation
]
X X x X oG
M(i )= M()+ m()d(i1 D+ fRi
i=1 i=1 i=1 i=1
where (Rj)x = mfd ( ki:i). Therefore
x * x Z7
m(v)dv m(d(i i1 = M(Ci) MC(i )] (i i om(i)+  m(v)dv
i=1 =1 i=1 1 k
T Xo(i1 )
= m(v)dv —— " R =A+B
5 L 2
=1
We now use the de nition of the matrix inequality to upper bound matrix B.
Let x be a non zero element' %f R"M:
X . N2 XK
X %Ri X = % (i1 )*XRix
i=1 i=0 1
1 X > S
E @( i1 i)2 JXk”RiJk| JXIJA
i=1 K;l o) 1
1 X X
5 max (Rij) i1 0 @ jxgixA
ot i=1 ;6 1
1 o X 1o >X o,
2 max (jRijy) i1 i o= xii® + A
kil i=1 2 Kl

n
2

Let us now upper bound matrix A. Since m( ) is symmetric, for agiven 2 R™,
m( ) km( )kol1d where k:k, is the matArix norm induced by the euclidian
T

max (jRiji) T kxk®
5l

norm, i.e. km( )ky = supkm( )xk,. Thus m( ) supkm( )k, Id.

kaz k

Those two upper bounds give us the result. O

The two preceding lemmas allow us to conclude this section’s proof.

Lemma 14.

Consider the Riccati equation (4), and the assumptions of Theorem 3. Let
T>,>T?be xed. Then, there cﬁ(ist gonstants ; > 0; i2fl;:;;nsg,and >0
such that, for all subdivisions sﬁ') o T «Qraon With s(k') sﬁ')l i)

Jd S assoonas  >T,
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Proof.
We start from Equation (27), the asynchronous continuous-discrete Gram
observability matrix at time T? > 0:

¢
Gaca(T>) = ch)d(T?): ; gjgl);-l—? C(Si)OC(Si) a gjgl);-l—? §Jgl) §Jgl)l

Let us consider the continuous Gram matrix G¢(T?), de ned in Lemma 13,
which also writes:

X 0 0 X A
Ge(T2) = AV TR)CEICED [ (v; Ty = GI(T)
i=1 i=1

By lemma 13, for all i 2 f1;:::; ngg, there are constants L > 0 and K; > 0:
GO(T) GUT) (KT, +L)Id (29)

Let us apply Lemma 12 on G¢(T>):

Id GC(T?)
> X (i) X (i)
GO (T») Gooy(T2) +  Gaoy(T2)

P & G X
Gacd(T?) + i(KiT? + L)I d
i=1 i=1

Therefore " #
i(KiT? + L) Id Gacd(T’?)

i=1
P
As a consequence, if all the ; are such that 5#1 -t‘KiT? +L) >0,
then, independently from the shape of the subdivisions & N and g, on»
there exist a positive , such that:

Jd s
This bound is also valid during prediction intervals. O

Remark 4. Erratum to [7]. The reason why we need Lemma 13 instead of
simply re-using Lemma 3.11 of [7] is because it should be used there as well.
Indeed, the following mistake [ which doesn’t invalidate the main result of the
article and is corrected by Lemma 13 ] is done in [7].

The very end of Proposition 3.12, which corresponds to Lemma 14 in the
present paper relies on the relation:

ald  G¢(T?) G(T?+"™) for ">0 (30)
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Going back to the de nition of the Gram observability matrix (28), we see that
the argument of G¢(:) plays a part both as the integration upper limit, but also
in the de nition of the resolvent matrix 5. As such, the integrands of G.(T?)
and G¢(T? + ") are not the same functions, which implies that 30 is not always

true.
However, this issue is resolved by following the procedure used in Equa-

tion (29) above.
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