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The aim of this paper is to present a general convexification recipe that can be useful 
for studying non-convex variational problems. In particular, this allows us to treat such 
problems by using a powerful primal–dual scheme. Possible further developments and 
open issues are given.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous présentons un principe général de convexification permettant de traiter certains 
problèmes variationnels non convexes. Ce principe permet de mettre en œuvre les 
puissantes techniques de dualité en ramenant de tels problèmes à des formulation de 
type primal–dual. Quelques perspectives et problèmes ouverts sont évoqués.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The role of duality techniques is nowadays very well established in applied mathematics, mechanics, and numerical anal-
ysis. In the context of infinite-dimensional vector spaces, convex analysis has been a powerful mathematical tool taking a 
major part in this success. The occasion is great here to honor the pioneering contributions of Jean-Jacques Moreau that 
go back to the 1960’s [1] (lectures notes at the “Collège de France”) almost concomitantly with the work of T. Rockafellar 
[2] focused on the finite dimensional case. Such a mathematical step in functional analysis was crucial in order to make 
a rigorous existence theory in elasticity theory (existence of equilibrium strain/stress tensors, quasi-static evolution), and 
it could extended to non-linear (but convex) situations, notably in plasticity theory [3,4]. Let us emphasize that the im-
pact of duality and convexity encompasses a very broad area in optimization theory: in numerical analysis, many efficient 
and stable algorithms are based on min–max (or saddle points) schemes and still recent progress in this area are very 
influential (for instance around proximal projection algorithms); in optimal mass transport [5], the existence and the char-
acterization of an optimal map often goes through the existence of a solution to a dual problem; in asymptotic analysis 
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(dimension reduction, homogenization), a huge number of results have been obtained by combining duality arguments and 
!-convergence techniques (for the latter notion we refer to [6][7]).

Unfortunately, such a duality theory completely breaks down as soon as some non-convexity appears in the optimization 
problem under study. In particular, this drawback is often met in calculus of variations, where even very classical problems 
involve non-convex energy costs. As no systematical tool is available to characterize a global optimum, a dramatic conse-
quence is that all currently available numerical methods loose their efficiency, because they are not able to rule out local 
minimizers and detect the global ones.

The aim of the present paper is to present some new perspectives for exploiting duality in a context of non-convex
variational problems. We begin by presenting in Section 2 a general convexification recipe whose basic idea emerged several 
years ago from discussions with Antonin Chambolle (unpublished notes). It enlightens a new interpretation of the calibration 
field developed for the Munford–Shah segmentation problem [8][9], and suggests a new road for identifying the variational 
limit of non-convex functionals. In Section 3, we show how the recipe can be applied to integral functionals satisfying a 
generalized co-area formula. Then we present a survey of the primal–dual framework obtained in [10][11], and we sketch a 
new proof for the !-convergence of Cahn–Hilliard’s models.

In the last Section 5, we discuss possible new developments and present a still unsolved conjecture.

2. General framework

We fix some preliminary notations. In this section, (X, τ ) denotes a topological space. We assume that there exists a 
continuous embedding

ϕ : u ∈ X #→ ϕu ∈ Y

where Y is a topological locally convex vector space. The symbol < ·, · > will denote the duality mapping between Y and 
its dual Y ∗ . Our convexification procedure is based on the following assumption:

{
there exists a suitable compact metrizable convex subset K ⊂ Y

whose extremal set K̈ satisfies: ϕ(X) ⊂ K̈
(H1)

A typical situation is when Y is the dual of a separable Banach space Z equipped with the weak-star topology. Then Y ∗

can be identified with Z itself and every bounded and weakly-star closed convex subset of Y is compact metrizable. Recall 
that v is an extreme point of K if v = θ v1 + (1 −θ)v2 ∈ K with v1, v2 ∈ K and θ ∈ (0, 1) cannot occur unless v = v1 = v2.

We consider a sequence of proper functionals F ε : X → [0, +∞], which we assume to be uniformly coercive, that is:
{

for every R , there exists a τ -compact subset C R such that:
∀ε > 0 , {u ∈ X ; F ε(u) ≤ R} ⊂ C R

(H2)

Define F ε
0 : Y → [0, +∞] by setting

F ε
0 (ϕu) = F ε(u) for every u ∈ X , F ε

0 (v) = +∞ if v /∈ ϕ(X)

The Fenchel conjugate of F ε
0 is given on Y ∗ by:

(F ε
0 )∗(g) := sup{< v, g > −F ε

0 (v) : v ∈ Y } = sup{< ϕu, g > −F ε(u) : u ∈ X}
Then (being K metrizable), the biconjugate (F ε

0 )∗∗ will coincide with the sequential convexification of F ε
0 , that is, for every 

v ∈ Y :

(F ε
0 )∗∗(v) = inf

{

lim inf
h

nh∑

i=1

th
i F ε(uh

i ) :
nh∑

i=1

th
i ϕuh

i
→ v

}

where {th
i : i = 1, · · · , nh} are real numbers in [0, 1] such that 

∑
i th

i = 1.
The main result of this section states that the variational limit of F ε at every u ∈ X agrees with that of the convexification 

(F ε
0 )∗∗ at ϕu . To be more precise, let us consider (see [7]) the (sequential) !-limits of Fε defined on (X, τ ) by

!−lim inf F ε(u) = inf
{

lim inf
ε→0

F ε(uε) : uε → u
}

!−lim sup F ε(u) = inf
{

lim sup
ε→0

F ε(uε) : uε → u
} (1)

and in a similar way the !-limits of (F ε
0 ) and (F ε

0 )∗∗ defined on Y . In order to simplify the notations, in the following, we 
will denote by:
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– F ′ , F ′′ the ! −lim inf and ! −lim sup of F ε (defined on X),
– F ′

0, F ′′
0 , the ! −lim inf and ! −lim sup of F ε

0 (defined on Y ),
– G ′ , G ′′ , the ! −lim inf and ! −lim sup of (F ε

0 )∗∗ .

Observe that due to (H2) by [12, Prop. 1.3.5], all sequential notions coincide with the topological ones. For instance, it 
holds:

F ′(u)(u) = sup
V ∈V(u)

lim inf
ε

inf
V

F ε , F ′′(u)(u) = sup
V ∈V(u)

lim sup
ε

inf
V

F ε (2)

On the other hand, in case of the constant sequence F ε = F , the lower and upper !-limits F ′, F ′′ coincide and agree with 
the usual notion of lower semicontinuous envelope:

F (u) = sup {&(u) : & lower semicontinuous , & ≤ F }

Theorem 2.1. Under (H1) and (H2), there holds, for every u ∈ X:

!−lim inf F ε(u) ≤ !−lim inf(F ε
0 )∗∗(ϕu) ≤ !−lim sup(F ε

0 )∗∗(ϕu) ≤ ! − lim sup F ε(u)

In particular, if F ε := F for every ε, then

F (u) = (F0)
∗∗(ϕu)

The proof of Theorem 2.1 rests upon the following result. Let V an open subset of Y and set

θV (w) :=
{

inf
{
ν(V ) : [ν] = w , ν ∈ P(K )

}
if w ∈ K

+∞ otherwise
(3)

where P(K ) denotes the space of probability measures on Y supported on compact subset K and [ν] denotes the barycenter 
(i.e. 

´
K gdν = g([ν]) for every continuous linear form g ∈ Y ∗ , see [13]).

Lemma 2.2. The function θV is convex, l.s.c., and satisfies

0 ≤ θV ≤ 1 in K , θV = 0 in K \ V , θV = 1 in K̈ ∩ V

Moreover, θV agrees with the convex l.s.c. envelope of the function 1V +χK (where χK = 0 on K and χK = +∞ on Y \ K ). It vanishes 
identically on K whenever V ∩ K̈ = ∅.

Proof. We recall that K being compact and metrizable, the set of probability measures K is a weakly-star compact subset 
on which the affine map ν #→ [ν] is continuous and takes values in K . It is then straightforward to check that the function 
θV : Y → [0, +∞] is convex l.s.c. on Y . If w ∈ K , by taking ν to be the Dirac mass at w in (3), we infer that θV (w) ∈ [0, 1], 
whereas θV (w) = 0 if w /∈ V . If w ∈ V is an extreme point of K , the latter choice ν = δw turns out to be the unique 
one compatible with the condition [ν] = w , and, in this case, we get θV (w) = δw(V ) = 1. In fact, it is a Choquet integral 
representation Theorem (see [13], Thm. 25, p. 283) that every w ∈ K is the barycenter of a suitable probability measure 
supported on K̈ , thus θV vanishes identically on K whenever V ∩ K̈ = ∅.

On the other hand, let us compute the Moreau–Fenchel conjugate of θV . For every g ∈ Y ∗ , we have

θ∗
V (g) = sup

w∈K
{< g, w > −θV (w)} = sup

ν∈P(K )

⎧
⎨

⎩

ˆ

K

(< g, w > −1V (w))ν(dw)

⎫
⎬

⎭

= sup
w∈K

{< g, w > −1V (w)} = (1V + χK )∗(g)

where, for the third equality, we used that the supremum over P(K ) is reached by Dirac masses. As θV is convex l.s.c., 
we deduce that θV = (θV )∗∗ = (1V + χK )∗∗ . Thus we have proved that θV coincides with the convex l.s.c. envelope of 
1V + χK . ✷

Proof of Theorem 2.1. By the assumption (H2), the sequential characterizations (1) for F ′ , F ′′ can be used restricting our-
selves to sequences uε → u, where uε belongs to a fixed compact subset C (= C R) ⊂ X . Since the embedding ϕ : C #→ ϕ(C)

is bicontinuous, the convergences uε → u or ϕuε → ϕu are equivalent. Thus, by the identity F (uε) = F ε
0 (ϕuε ) (notice that 

! −lim inf F ε
0 (v) = +∞ whenever v /∈ ϕ(X)), we infer that

F ′
0 = F ′ ◦ ϕ , F ′′

0 = F ′′ ◦ ϕ

We are therefore reduced to showing that, for every u ∈ X :
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i) F ′
0(ϕu) = ! −lim inf F ε

0 (ϕu) ≤ ! −lim inf(F ε
0 )∗∗(ϕu),

ii) ! −lim sup(F ε
0 )∗∗(ϕu) ≤ ! − lim sup F ε

0 (ϕu) = F ′′
0 (ϕu).

The inequality ii) is obvious since (F ε
0 )∗∗ ≤ F ε

0 . Let us show i). Let v be in K̈ and choose a real t < F ′
0(v). Then, by using the 

topological characterization of F ′
0 (see (2)), we may find a suitable open neighborhood V of v such that t < infV F 0

ε holds 
for ε small enough. For such ε, we have F ε

0 ≥ t θV . Then, by using Lemma 3 and by passing to the biconjugate, we obtain 
(F ε

0 )∗∗ ≥ t (θV )∗∗ = t θV . We deduce

!−lim inf(F ε
0 )∗∗(v) ≥ t θV (v) = t

The claim i) follows, since by (H1), we have ϕu ∈ K̈ for every u ∈ X . ✷

Homogeneous variant: In many cases the convex compact subset K appears to be the base of a closed convex cone. Namely, 
we make the additional assumption

There exists a continuous linear form l0 ∈ Y ∗ such that l0 = 1 on K (H3)

This assumption allows us to simplify our duality scheme. For every ε > 0, we introduce the convex set of Y ∗:

Dε := {g ∈ Y ∗ : (F ε
0 )∗(g) < 0} = {g ∈ Y ∗ : < ϕu, g >< F ε(u) ∀u ∈ X}

and in a similar way, we define D ′, D ′′ ⊂ Y ∗ as

D ′ := {g ∈ Y ∗ : (F ′
0)

∗(g) ≤ 0} , D ′′ := {g ∈ Y ∗ : (F ′′
0 )∗(g) ≤ 0} (4)

Note that all results hereafter are unchanged if Dε is defined alternatively with a large inequality. It turns out that func-
tionals (F ε

0 )∗∗, (F ′
0)

∗∗, (F ′′
0 )∗∗ agree on K with the support functions of Dε, D ′, D ′′ , respectively (they are one homogeneous 

convex, l.s.c. functionals on Y ).

Lemma 2.3. For every v ∈ Y with < v, l0 >= 1 (in particular for v ∈ ϕ(X)), one has

(F ε
0 )∗∗(v) = sup

g∈Dε
< v, g > , (F ′

0)
∗∗(v) = sup

g∈D ′
< v, g > , (F ′′

0 )∗∗(v) = sup
g∈D ′′

< v, g >

Proof. Clearly, we have for every v ∈ Y ,

(F ε
0 )∗∗(v) = sup

g∈Y ∗
< v, g > −(F ε

0 )∗(g) ≥ sup
g∈Dε

< v, g >

We need to prove that the converse inequality holds if v satisfies < v, l0 >= 1. We notice that under (H3), we have, for 
every g ∈ Y ∗ and λ ∈ R,

(F ε
0 )∗(g − λl0) = sup

u∈X

{
< ϕu, g − λl0 > −F ε(u)

}
= (F ε

0 )∗(g) − λ (5)

In particular, by applying the identity above with λ > (F ε
0 )∗(g), we obtain that gλ := g − λ l0 satisfies (F ε

0 )∗(gλ) < 0 thus 
gλ ∈ Dε . Therefore, for every v such that < v, l0 >= 1, one has

< v, g > −(F ε
0 )∗(g) = < v, gλ > +λ − (F ε

0 )∗(g) ≤ sup
h∈Dε

< v,h > +λ − (F ε
0 )∗(g)

hence the desired inequality letting λ ↘ (F ε
0 )∗(g). The proof is the same for (F ′

0)
∗∗ and (F ′′

0 )∗∗ . ✷

In the next lemma, we establish a comparison between the sets D ′ , D ′′ defined above and the lower and upper Kura-
towski limits of the sets Dε in Y ∗ , where Y ∗ is equipped with the strong topology (that is, the topology of the uniform 
convergence on the compact subsets of Y ). Let us denote by Li(Dε) and Ls(Dε) these lower and upper Kuratowski lim-
its. There are closed subsets of Y ∗ whose indicator functions (see [7]) coincide, respectively, with ! − lim infχDε and 
! −lim supχDε . In other words:

i) g ∈ Li(Dε) iff there exist gε ∈ Dε such that gε → g .
ii) g ∈ Ls(Dε) iff there exists a subsequence g′

ε , with g′
ε ∈ D ′

ε , such that g′
ε → g .

Lemma 2.4. With the notations above and D ′, D ′′ defined by (4), we have the following inclusions:

i) (F ′
0)

∗∗ ≤ G ′ ≤ G ′′ ≤ (F ′′
0 )∗∗ .

ii) D ′ ⊆ Li(Dε) ⊆ Ls(Dε) ⊆ D ′′ .
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Proof. Since K is compact and by exploiting the definition of F ′
0 on a minimizing sequence, it is easy to check that, for 

every g ∈ Y ∗ , it holds

− lim sup
ε

(F ε
0 )∗(g) = lim inf

ε
inf
K

{F ε
0− < ·, g >} ≥ inf

K
{F ′

0− < ·, g >} = −(F ′
0)

∗(g) (6)

Let us show (i). Since (F ε
0 )∗∗ ≤ F ε

0 , we have G ′′ ≤ F ′′
0 . The inequality G ′′ ≤ (F ′′

0 )∗∗ is then a consequence of the fact that 
G ′′ is l.s.c. and convex (as the ! −lim sup-limit of sequence of convex functions). On the other hand, for every g ∈ Y ∗ and 
every sequence {vε} converging to v in Y , one has:

lim inf
ε

(F ε
0 )∗∗(vε) ≥ < v, g > − lim sup

ε
(F ε

0 )∗(g) ≥< g, v > −(F ′
0)

∗(g)

where we used Moreau–Fenchel inequality and (6). Thus G ′(v) ≥< g, v > −(F ′
0)

∗(g). The inequality (F ′
0)

∗∗ ≤ G ′ follows by 
taking the supremum with respect to g ∈ Y ∗ .

Let us show (ii): let g ∈ D ′ and assume first that (F ′
0)∗(g) < 0. Then, by (6), one has (F ε

0 )∗(g) ≤ 0 for ε small enough 
(hence g ∈ Dε) so that g belongs to Li(Dε). This conclusion can be extended to an element g ∈ D ′ such that (F ′

0)
∗(g) = 0. 

Indeed, let gn := g − (1/n) l0. Then, by (5), (F ′
0)

∗(gn) = −1/n < 0. Therefore gn belongs to the closed subset Li(Dε) while 
gn → g as n → ∞. Eventually, we have proved that D ′ ⊆ Li(Dε).

It remains to show that Ls(Dε) ⊆ D ′′ . Let g ∈ Ls(Dε) and v ∈ Y ∗ . By the (sequential) definitions of Ls(Dε) and of F ′′
0 , 

there exists a sequence (vε, gε) ∈ Y × Y ∗ such that

gε ∈ Dε and gε → g strongly in Y ∗ , vε → v in Y and lim sup
ε

F ε
0 (vε) ≤ F ′′

0 (v)

Then, by applying the Moreau–Fenchel inequality and (6), we are led to

< v, g > = lim
ε

< vε, gε > ≤ lim sup
ε

F ε
0 (vε) + lim sup

ε
(F ε

0 )∗(gε) ≤ F ′′
0 (v) + 0

holding for every v ∈ Y . Thus, owing to the definition of D ′′ in (4), we get g ∈ D ′′ . This proves that Ls(Dε) ⊆ D ′′ . ✷

To summarize this section, we give the following practical result, which will be useful in the applications, where we need 
to identify the !-limit of a sequence {F ε}. Notice that, by Kuratowski’s compactness theorem [6] [7] and our assumptions 
(H1), (H2) (which allow us to treat X as a separable metric space) such a !-limit exists, at least for a subsequence of {F ε}.

Theorem 2.5. Assume that (H1), (H2), (H3) hold. Then the following three assertions are equivalent:

i) F ε !-converges to a limit F in X (i.e. F ′ = F ′′ = F ),
ii) (F ε

0 )∗∗ !-converges to a limit G in Y (i.e. G ′ = G ′′ = G),
iii) Dε converges in the Kuratowski sense to a set D in the strong topology of Y ∗ (i.e. D ′ = D ′′ = D).

In addition, if one of these assertions holds true, then F , G and D satisfy the relations

D = {g ∈ Y ∗ : < ϕu, g >≤ F (u) ∀u ∈ X} (7)

G(v) = sup
g∈D

< v, g > if < v, l0 >= 1, +∞ otherwise (8)

F (u) = G(ϕu) = sup
g∈D

< ϕu, g > (9)

Proof. If F ε !−→ F , then by definition F = F ′ = F ′′ so that F ′
0 = F ′′

0 and D ′ = D ′′ . We conclude that ii) and iii) hold by invok-
ing Lemma 2.4. We have G = (F ′

0)
∗∗ = (F ′′

0 )∗∗ and D = D ′ = D ′′ , showing (7), (8) and (9) as a consequence of Theorem 2.1.
Conversely, assume that ii) or iii) holds. By compactness, we consider F and a subsequence {F εk } that !-converges 

to F . Then, the reconstruction formula (9) shows that the limit F is uniquely determined. Hence the whole sequence {F ε}
!-converges to F . ✷

3. Application to non-convex variational problems

We now apply the framework developed in Section 2 to the following situation. Let + be a bounded Lipschitz domain 
of RN . We consider the embedding of X = L1(+) into Y = L∞(+ × R) defined by:

ϕ : u ∈ X #→ 1u ∈ Y , 1u(x, t) :=
{

1 if u(x) > t
0 if u(x) ≤ t
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Let us consider

K := {v ∈ L∞(+ × R) : v(x, t) ∈ [0,1] a.e. (x, t) ∈ + × R}
It is a compact subset of L∞(+ × R) equipped with its weak-star topology (we are in the case where Y = Z∗ if we set 
Z = L1(+ × R)). It is easy to check that 1u is an extreme point of K as it takes values in {0, 1}. Moreover, the map u #→ 1u
is continuous from L1(+) to L∞(+ × R) (embedded with its weak-star topology).

Let F : u ∈ L1(+) → R ∪ +∞ be a possibly non-convex functional. We simply assume that F is l.s.c. (with respect to the 
strong convergence in L1(+)) and that the following coercivity assumption holds:

⎧
⎨

⎩
F (u) ≥ k ∥u∥ − 1

k
, for suitable constant k > 0

For every R > 0, the set {u : F (u) ≤ R} is a compact subset of L1(+)

(10)

We consider the minimization problem

inf
{

F (u) : u ∈ L1(+)
}

(P)

Under the assumption (10), this problem has at least one solution, and the set of solutions argminP is a non-void compact 
subset of L1(+) (since F is not convex, we expect a priori multiple solutions).

Following the construction developed in Section 2, we define for every pair (v, g) ∈ L∞(+ × R) × L1(+ × R)

F ∗
0(g) = sup

u∈L1(+)

⎧
⎨

⎩

¨

+×R

g(x, t)1u dx dt − F (u)

⎫
⎬

⎭ , G(v) = sup
g∈L∞(+×R)

⎧
⎨

⎩

¨

+×R

g v dx dt − F ∗
0(g)

⎫
⎬

⎭ (11)

Since F coincides with its l.s.c. envelope, it holds, as a consequence of Theorem 2.1, that

G(1u) = F (u) for all u ∈ L1(+) (12)

Our convexification recipe leads to the following convex optimization problem

inf
{

G(v) : v ∈ L∞(+ × R; [0,1])
}

(Q)

whose set of solutions argminQ is a non-empty weakly star compact subset of L∞(+ × R; [0, 1]).

Lemma 3.1. It holds infP = infQ and the following equivalence holds:

u ∈ argmin P ⇐⇒ 1u ∈ argmin Q

Proof. Applying (11) with g = 0, we get

inf Q = −G∗(0) = −(F0)
∗(0) = − sup{−F (u) : u ∈ X} = inf P

The equivalence statement follows by using the identity (12). ✷

The next step is twofold: first we have to identify the convexified energy in practice in order to settle a duality scheme 
for Q; then, as some solutions v to (Q) may take intermediate values in (0, 1) (i.e. v is not of the form 1u ), we have to 
specify how solutions to (P) can be recovered.

A complete answer to these two requirements will be obtained under an additional assumption on functional F . We will 
use the following slicing argument on the class

A :=
{

v ∈ L∞(+ × R) : v(x, ·) non-increasing (a.e. x ∈ +) , v(x,−∞) = 1 , v(x,+∞) = 0
}

For every v ∈ A and s ∈ [0, 1], let us define

us(x) := inf
{
τ ∈ R : v(x,τ ) ≤ s

}
(13)

Notice that, by construction, the subgraph of us agrees up to a Lebesgue negligible set with the level set {τ ∈ R :
v(x, τ ) > s}, namely,

1us (x, t) = 1{v>s}(x, t) for a.e. (x, t) ∈ + × R (14)

In what follows, we denote by v0 the element of A defined by

v0(x, t) := 1{t>0} (that is v0 = 1u0 with u0 ≡ 0)
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Definition 3.1. We say that a functional J : L∞(+ × R) → [0, +∞] satisfies the generalized co-area formula if, for every 
v ∈ L∞(+ × R), the function t #→ J (1{v>s}) is Lebesgue-measurable on R and there holds

J (v) =
+∞ˆ

−∞
J (1{v>s})ds ∀v ∈ L∞(+ × R) (15)

It is readily seen that a functional J satisfying the generalized co-area formula has to be positively 1-homogeneous (i.e. 
J (λv) = λ J (v) for all λ ≥ 0) and that J (v) vanishes for constant functions v .

Theorem 3.2. Assume that F satisfies Eq. (10) and that there exists a convex and weakly-star l.s.c. functional J : L∞(+ × R) →
[0, +∞] satisfying the generalized co-area formula and such that

J (1u) = F (u) for every u ∈ L1(+) (16)

Then, if {us; s ∈ [0, 1]} is the parametrized family associated with v through (13), it holds

G(v) =

⎧
⎪⎪⎨

⎪⎪⎩

1ˆ

0

F (us)ds if v ∈ A

+∞ otherwise

(17)

Therefore, if v ∈ argminG, then v ∈ A and us ∈ argminF for L1-a.e. s ∈ (0, 1). In particular, if the initial problem P admits a finite 
number of solutions {u1, . . . , uK }, then

argmin G =
{

K∑

k=1

tk 1uk , tk ≥ 0 ,
∑

tk = 1

}

(18)

meaning that a solution v to problem Q must be a piecewise constant function.

It is remarkable consequence of Theorem 3.2 that a global minimizer for problem (Q) suitably chosen (taking tk ∈ (0, 1)
in (18)) can encode all the possibly multiple solutions to problem (P). We refer to [11] for the numerical illustration of this 
nice feature.

Before giving the proof, let us notice first that the co-area condition (16) is used merely to minorize G . An upper bound 
for G is provided in the general case owing to the following result.

Lemma 3.3. Let v ∈ L∞(+ × R) such that G(v) < +∞. Then v ∈ A, and it holds

G(v) ≤
1ˆ

0

F (us)ds with us defined by (13)

Remark. By a slight modification of the proof, it is possible to show that the conclusions of Lemma 3.3 still hold if the first 
condition in (10) is replaced by: F (u) ≥

´
+ β(|u|) where β : R+ → [0, +∞] is non-decreasing with β(+∞) = ∞.

Proof. By using Fubini formula, one checks easily that, for every u ∈ L1(+), one hasˆ

+

|u|dx =
¨

+×R

|1u −v0| dx dt

Therefore, by (10), for every v it holds:

F0(v) ≥ H(v) :=

⎧
⎪⎨

⎪⎩

k
¨

+×R

|v−v0| dx dt − 1
k

if v ∈ A

+∞ otherwise

It is easy to check that H(v) is convex and weakly l.s.c. Indeed, if lim inf J (vn) < +∞ holds for a sequence vn in A such that 
vn → v is weakly star, then v(x, ·) is still non-increasing and the inequality lim inf

˜
+×R |vn−v0| ≥

˜
+×R |v −v0| shows that ´

R |v −v0|(x, t) dt < +∞ for a.e. x ∈ +. Thus v(x, +∞) = 0 and v(x, −∞) = 1. It follows that v ∈ A and lim inf H(vh) ≥ H(v). 
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Now we may conclude by simply saying that H = F ∗∗
0 ≥ J so that G(v) < +∞ implies that H(v) < +∞ hence v ∈ A (in 

addition, we get (v − v0) ∈ L1(+ × R)).
For the second assertion, we apply Jensen’s inequality to the convex functional G and to the family of functions {vs, s ∈

[0, 1]} where vs(x, t) = 1us (x, t) (see (14)). One checks easily that 
´ 1

0 vs(x, t) ds = v(x, t). Thus, recalling that G(1us ) = F (us)

holds by Theorem 2.1, we conclude that

G(v) ≤
1ˆ

0

G(vs)ds =
1ˆ

0

F (us)ds ✷

Proof of Theorem 3.2. By the definition of F0, it holds J ≤ F0. Thus, as J is convex l.s.c., by taking the biconjugates, we 
infer that J ≤ F ∗∗

0 = G . Let v ∈ A. By applying the assumption (16), we derive that J (v) =
´ 1

0 F (us) ds, being us defined by 
(13). Thus G(v) ≥

´ 1
0 F (us) ds. By invoking Lemma 3.3, we are led to the identity (17). Assume now that v ∈ argmin G . By 

Lemma 3.1, F and G share the same infimum value, which is a finite real α. Therefore, as 0 = G(v) − α =
´ 1

0 (F (us) − α) ds, 
we deduce that us ∈ argmin F for a.e. s ∈ [0, 1]. Therefore, (P) has infinitely many solutions unless v is piecewise constant. 
Conversely, if (P) has a finite set of solutions {uk : 1 ≤ k ≤ K }, then it is straightforward that the set of solutions to (Q)
coincides with the convex hull of {1uk : 1 ≤ k ≤ K }. ✷

4. Duality schemes and examples

A large class of functionals satisfying the assumptions required in Theorem 3.2 are of the kind

Fλ(u) =

⎧
⎪⎨

⎪⎩

ˆ

+

f (u,∇u)dx − λ

ˆ

+

p(x)u dx , if u ∈ W 1,2
0 (+)

+∞ otherwise

where the integrand f = f (t, z) is a function f : R × RN → (−∞, +∞] satisfying:

∀t ∈ R , f (t, ·) is convex , f is l.s.c. on RN × R , f (t, z) ≥ k|z|2 − 1
k

(19)

where k > 0, λ is a non-negative parameter and the source term p(x) (load) belongs to Lr′
(+) (r′ conjugate exponent of r) 

where r is compatible with the embedding W 1,2
0 (+) ⊂ Lr(+) (that is r ≤ 2N

N+2 if N ≥ 3, r < +∞ if N = 2).
Notice that here the non-convexity of the energy density f (u, ∇u) involves only the dependence with respect to u. In 

fact, the convexity with respect to the gradient part is necessary to obtain lower semicontinuity for F (u) and well-posedness 
for the primal problem. It turns out that the condition (16) is satisfied by considering the convex 1-homogeneous functional 
defined by:

J (v) :=
ˆ

+×R

h f (t,Dv) where h f (t, zx, zt) :=

⎧
⎨

⎩
−zt f

(
t,

zx

−zt

)
if zt < 0

+∞ if zt ≥ 0
(20)

We refer to the recent paper [11] for further details, namely for a proof of the co-area formula.

4.1. Dual problem in + × R

Let us describe the dual problem in the simpler case where f is of the form f (t, z) = g(t) + ϕ(z) being ϕ : RN → R+

convex continuous with ϕ(0) = 0 and g : R → R ∪ {+∞} a lower semicontinuous function with possibly countably many 
discontinuities. The primal problem reads

inf

⎧
⎨

⎩

ˆ

+

(ϕ(∇u) + g(u)) dx − λ

ˆ

+

p(x)u dx : u ∈ H1
0(+)

⎫
⎬

⎭ (Pλ)

and its convexified version

inf

⎧
⎨

⎩

¨

+×R

h f (t,Dv) − λ

¨

+×R

p(x)v dx dt : v ∈ A , v − v0 ∈ B V 0(+ × R)

⎫
⎬

⎭ (Qλ)

where B V 0(+ × R) denotes the set of integrable functions with bounded variations on + × R and whose trace vanishes on 
the lateral boundary ∂+ × R (see [14]).
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The dual problem to our non-convex problem (Pλ) is then recovered be applying classical duality to problem (Qλ). The 
competitors of this dual problem (P∗

λ ) are vector fields σ = (σ x, σ t) : + × R → RN × R that we take in the class

X1(+ × R) =
{
σ ∈ L∞(+ × R;RN+1) : divσ ∈ L1

loc(+ × R)
}

and (P∗
λ ) consists of the following maximal flux problem:

sup

⎧
⎨

⎩−
ˆ

+

σ t(x,0)dx : σ ∈ K , −divσ = λ p in + × R

⎫
⎬

⎭ (P∗
λ )

where σ ∈ K means that the vector field σ ∈ X1(+ × R) satisfies the pointwise (convex) constraints:
{

σ t(x, t) ≥ ϕ∗(σ x(x, t)) − g(t) for LN+1-a.e. (x, t) ∈ + × R
σ t(x, t) ≥ −g(t) ∀ t ∈ S g and for LN -a.e. x ∈ +

(21)

where S g is the set of discontinuities of g .
Notice here that the regularity condition σ ∈ X1(+ × R) is required in order to be able to define the normal trace of σ

on a N-dimensional rectifiable subset of RN+1 (in particular for every t , σ t(·, t) is well defined for a.e. x ∈ +). This allows 
us also to compute the flux of σ through the graph of any competitor u for (Pλ). By applying a generalized Green formula 
for duality pairings (v, σ ), it is easy to check that, for every admissible pair (u, σ ), one hasˆ

+

f (u,∇u)dx − λ

ˆ

+

p(x)u dx ≥ −
ˆ

+

σ t(x,0)dx

thus it holds inf(Pλ) ≥ sup(P∗
λ ). The core of our duality theory is the following no-gap result (see [11] for a complete proof 

in the case p = 0).

Theorem 4.1.

inf(Pλ) = sup(P∗
λ )

Among consequences of Theorem 4.1, we can derive (see [11]) necessary and sufficient conditions for a global optimum 
of (Pλ), thus allowing us to rule out local minimizers that are non-global ones. A second consequence is a saddle point 
characterization that fits to the implementation of efficient primal–dual algorithms ([15]). This is described in the next 
subsection.

Remark 4.2. The result above can be extended to mixed Dirichlet–Neumann conditions. In particular, if u = u0 is prescribed 
on a subset !0 ⊂ ∂+ for some u0 ∈ W 1,2(+), then the competitors σ for (P∗

λ ) have to satisfy a vanishing normal trace 
condition on (∂+ \ !0) × R, while the linear term to be maximized becomes 

´
Gu0

σ · νu0 , being Gu0 the graph of u0 with 
unit normal νu0 pointing downwards. For the more delicate case of Robin-type conditions, we refer the reader to [11].

Remark 4.3. When the boundary datum on !0 is a bounded function u0, there exist in general a priori lower and upper 
bounds for the minimizers of the primal problem (Pλ). In this case, the infimum is unchanged if we impose u to take values 
in a suitable closed interval I := [m, M] of the real line. We are thus led to consider the variant of the primal problem (Pλ), 
where the class of admissible functions is restricted to 

{
u ∈ W 1,2(+; I) : u = u0 on !0

}
. The duality result continues to 

hold (with a simpler proof), provided the admissible fields in the dual problem (P∗
λ ) are taken in the class K(!0, I) of 

elements σ ∈ X1(+ × (m, M)) satisfying the pointwise constraints (21) on + × I and the equilibrium conditions

−divσ = λ p(x) in + × I , σ x · ν+ = 0 on (∂+ \ !0) × I

Accordingly, the convexified problem (Qλ) becomes

inf

⎧
⎨

⎩

¨

+×I

h f (t,Dv) − λ

¨

+×I

p(x)v dx dt : v ∈ A(u0,!0, I)

⎫
⎬

⎭ (Qλ)

where the set of admissible functions v is given by

A(u0,!0, I) :=
{

v ∈ B V (+ × I; [0,1]) : v = 1 on + × {m} , v = 0 on + × {M} , v = 1u0 on !0 × I
}

(the condition 
˜

+×I h f (t, Dv) < +∞ implies implicitly that v(x, ·) is monotone non-increasing).
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Fig. 1. (a) The free boundary problem (22). (b) The optimal flow problem (23).

Remark 4.4. The growth condition (19) with exponent r = 2 can be considered with a different exponent r ∈ (1, +∞) and 
all the statements can be reformulated accordingly. The case r = 1 works pretty well for the dual problem – see [10] – but 
a lot of attention has to be devoted to the existence and compactness issue in the primal problem. Indeed, the functional F
is no more l.s.c. in L1(+) and has to be relaxed in the space B V (+), whereas, so that inf(Pλ) > −∞, we need to chose λ
in a finite interval [0, λ∗) (this is in relation with the limit load problem is plasticity [16]).

To have in mind a prototype situation, let us mention, for instance, the free boundary problem studied in the seminal 
paper [17]:

inf

⎧
⎨

⎩

ˆ

+

1
2
|∇u|2 dx + κ

∣∣{u > 0}| : u ∈ W 1,2(+) , u = 1 on ∂+

⎫
⎬

⎭ (22)

the free boundary being the frontier of the positivity set {u > 0} (see Fig. 1, in which + = (0, 1)2 ⊂ R2).
Clearly, problem (22) falls into this general framework, by taking !0 = ∂+, u0 ≡ 1, p ≡ 0, and ϕ(z) = 1

2 |z|2 and g(t) =
κ 1(0,+∞)(t) which jumps at t = 0. It is easy to check that solutions u exist and satisfy 0 ≤ u ≤ 1 a.e. so that Remark 4.3
applies and the dual problem can be restricted to vector fields defined in + × (0, 1). Let K be the set of σ ∈ X1(+ × (0, 1))

such that

σ t(x, t) + κ ≥ 1
2
|σ x(x, t)|2 a.e. on + × R , σ t(x,0) ≥ 0 a.e. on +

The dual problem reads:

sup
{

−
ˆ

+

σ t(x,1)dx : σ ∈ K , divσ = 0 in + × (0,1)
}

(23)

Notice that the integral on + represents the flux of σ across the graph of the boundary datum u0 ≡ 1. Thus problem 
(23) has a nice fluid mechanic interpretation: it consists in maximizing the downflow through the top face + × {1} of 
an incompressible fluid constrained into the cylinder + × R, whose speed σ satisfies the conditions above, preventing in 
particular the fluid from passing across the bottom face (see Fig. 1(b)).

4.2. Saddle point characterization

We consider the variant described in Remark 4.3 where competitors for (Qλ) are in the class Â := A(u0, !0, I) (here 
I = (m, M)) and competitors σ for (P∗

λ ) are in the class K̂ := K(u0, !0, I). Let us introduce, for every pair (v, σ ), with 
v ∈ B V (+ × I; [0, 1]) and σ ∈ X1(+ × (m, M)), the following Lagrangian

L(v,σ ) :=
¨

+×I

(σ · Dv) − λ

¨

+×I

p(x) v dx dt (24)

Theorem 4.5. There holds

inf(Pλ) = inf
v∈Â

sup
σ∈K̂

L(v,σ ) = sup
σ∈K̂

inf
v∈Â

L(v,σ ) = sup(P∗
λ )
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Moreover, a pair (v, σ ) is optimal for (Qλ) and for the dual problem (P∗
λ ) if and only if it is a saddle point for L, namely

L(v,σ ) ≤ L(v,σ ) ≤ L(v,σ ) ∀(v,σ ) ∈ Â × K̂

The proof is straightforward. Different numerical schemes (explicit and implicit) in order to solve the saddle-point prob-
lem above are presented in [11] and [15]. In particular, in the case of the 2d-example (22), some threshold value κ∗ can 
be computed, for which a numerical solution v(x1, x2, t) is piecewise constant, taking three values 0, θ, 1 (θ ∈ (0, 1)). The 
upper level sets of v thus determine two global minimizers u1, u2 for the original free boundary problem (u1 ≡ 1 remains 
a solution for κ < κ∗ , and it is the unique one).

4.3. An example of !-convergence

We revisit here the celebrated asymptotic analysis of the Modica–Mortola functional, which arises in the sharp interface 
model for Cahn–Hilliard fluids, showing how the duality approach developed in Section 2 can be used efficiently. In fact, 
we can treat a slightly more general model where we consider a family of functionals (F ε)ε>0, indexed with a (small) scale 
parameter ε > 0, of the following form (see [18])

F ε(u) := 1
ε

ˆ

+

f (u(x),ε∇u(x))dx

where + is a bounded domain of RN with Lipschitz boundary, and we make the following assumptions on f : R × RN →
[0, +∞):

i) f is continuous in the first variable and convex in the second;
ii) there exist two real numbers 0 < α < β such that f (t, 0) > 0 if t ≠ α, β , f (α, 0) = f (β, 0) = 0, and for every z ≠ 0 and 

every t , f (t, z) > f (t, 0);
iii) there exists M > β such that f (t, ·) is locally bounded, uniformly in t ∈ [0, M];
iv) there exists a function ψ with superlinear growth at ∞, such that f (t, p) ≥ ψ(p) for every t ∈ R and p ∈ RN .

Under such assumptions, it is not difficult to show that the family {F ε , ε > 0} is equicoercive in X = L1(+; [0, M]) (that is, 
it satisfies the condition (H2) in Section 2). Our aim is to compute the !-limit of Fε as ε → 0. For every t ∈ R and z ∈ RN , 
we define

fε(t, z) = f (t,εz)
ε

, fc(t, z) = inf
ε>0

fε(t, z) , h(z) =
β̂

α

f ∗∗
c (t, z)dt

By construction, the conical envelope of fc is one-homogeneous in z. It follows that h is a convex and one homogeneous 
function of z. An easy computation involving Moreau–Fenchel conjugates, for fixed t and with respect to the variable z, 
shows that

f ∗
ε (t, z∗) = 1

ε
f ∗(t, z∗) , f ∗∗

c (z) = sup
z∗∈RN

{z · z∗ : f ∗(t, z∗) ≤ 0} (25)

Under these assumptions, we can show the following result.

Theorem 4.6. As ε goes to zero, F ε !-converges in L1(+; [0, M]) to the functional F given by

F (u) =

⎧
⎪⎨

⎪⎩

ˆ

Su∩+

h(νu)dH N−1 if u ∈ B V (+; {α,β})

+∞ otherwise

Here Su denotes the discontinuity set of u given in the form u = α1A +β1+\A , νu = Du
|Du| represents the inwards pointing 

normal to the interface ∂ A ∩ + and the integral on Su is taken with respect to the N − 1 dimensional measure.
The Modica–Mortola functional corresponds to taking f (t, z) = 1

2 |z|2 + W (t), where the double-well potential W : R+ →
R+ is a continuous function such that

lim
t→∞

W (t)
t

= +∞ , W (t) = 0 ⇐⇒ t ∈ {α,β}

In that case, we recover an isotropic interface energy h(z) = c |z|, where the surface tension coefficient is determined by 
c =

´ β
α

√
2W (s)ds (see [19]).
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As an alternative to [18], we propose here a proof by duality exploiting Theorem 2.5 in Section 2. Let us sketch the 
different steps. We consider X = L1(+; [0, M]), Y := L∞(+ × (−1, M)) (endowed with the weak-star topology), and ϕ : u ∈
X #→ 1u(x, y). The assumptions (H1), (H2) are fulfilled as well as (H3) if we consider the (weakly star) continuous linear 
form l0(v) := |+|−1 ´

+×(−1,0) v dx dt (as u ∈ X is non-negative, it holds 1u = 1 on + × (−1, 0) so that l0(1u) = 1).
Let us set Q := + × (−1, M), Q − := + × (−1, 0), Q + := + × (0, M). First we compute:

Dε :=

⎧
⎪⎨

⎪⎩
p ∈ L1(Q ) :

¨

Q

1u p dx dt < F ε(u) ∀u ∈ X

⎫
⎪⎬

⎪⎭

We observe that p ∈ Dε iff it holds inf{F ε(u) −
˜

Q + p 1u} >
˜

Q − p. Thus, by applying the duality result of Theorem 4.1 (in 
the variants described in Remark 4.2 and Remark 4.3), we get

Dε =
{

p ∈ L1(Q ) : ∃σ ∈ Kε , −divσ = p in Q + , σ x · ν+ = 0 on ∂+ × (0, M)
ˆ

+

σ t(x,0)dx +
¨

Q −

p < 0
}

where, in view of (25) and of the continuity of f (·, z),

Kε = {σ ∈ L∞(Q +;RN+1) : f ∗(t,σ x) ≤ ε σ t a.e. in Q +}
Next we define D to be the closure in L1(Q ) of the set D0 given by

D0 =
{

p ∈ L1(Q ) : ∃σ ∈ K0 : , −divσ = p in Q + , σ x · ν+ = 0 on ∂+ × (0, M)
ˆ

+

σ t(x,0)dx +
¨

Q −

p < 0
}

where

K0 = {σ ∈ C1(Q +) : σ (x, t) ∈ !0(t) ∀(x, t) ∈ Q +}
C0(t) =

{
q = (z∗,τ ) ∈ RN × R : f ∗(t, z∗) < 0 , τ > 0 if t ∈ {α,β}

}

We introduce the following functional G defined on L1(Q ):

G(v) := sup
p∈D

¨

Q

v · p dx dt = sup
p∈D0

¨

Q

v · p dx dt

By a straightforward computation, we observe that the support function of the convex constraint associated with subset K0
i.e. C0(t) =

{
q = (z∗,τ ) ∈ RN × R : f ∗(t, z∗) < 0 , τ > 0 if t ∈ {α,β}

}
is given by:

h(t, zx, zt) = f ∗∗
c (t, zx) if zt = 0 or

[
zt ≤ 0 and t ∈ {α,β}

]
, h(t, zx, zt) = +∞ otherwise

As a consequence of a commutation argument between the symbols sup and 
˜

(see [20]), we infer that G(v) =
˜

Q h(t, Dv). 
In particular, G(v) is finite only for those functions v(x, t) that are piecewise constant with respect to t and such that v = 1
for t < α, v = 0 for t > β and v = θ(x) for t ∈ (α, β) being θ an element of B V (+; [0, 1]). Then G(v) =

´ β
α

´
+ f ∗∗

c (t, Dθ) =´
+ h(Dθ). If v = 1u , then we have θ = 1A for a suitable subset A ⊂ + with finite perimeter so that u = α1A + β1+\A and 

G(1u) = F (u). Therefore, G(v) (which satisfies the co-area formula) is nothing else but the convexified functional associated 
with the limit F given in Theorem 4.6. In other words, we have showed that the set D0 above satisfies

D0 = D =

⎧
⎪⎨

⎪⎩
p ∈ L1(Q ) :

¨

Q

p 1u dx dt ≤ F (u) ∀u ∈ L1(Q )

⎫
⎪⎬

⎪⎭
(26)

Owing to Theorem 2.5, we deduce Theorem 4.6 by invoking the following result.

Lemma 4.7. With the notations above, Dε converges in the Kuratowski sense to D in L1(Q ).
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Proof. First we prove that D0 ⊂ Li(Dε) (thus D ⊂ Li(Dε)). Let p ∈ D0 and σ ∈ K0 associated. By continuity, σ t is positive 
in a neighborhood of t ∈ {α, β}, while in the complementary f ∗(t, σ x) is majored by a negative constant. Therefore, σ ∈ Kε

and p ∈ Dε for ε small enough.
Let us show now that Ls(Dε) ⊂ D . Let p ∈ Ls(Dε). Then there exists a sequence such that pε → p in L1(Q ) and pε =

− divσε in Q + , where σε has a vanishing normal trace on ∂+ × (0, M) and satisfies

f ∗(t,σ x
ε ) ≤ ε σ t

ε in Q + ,

ˆ

+

σ t
ε(x,0)dx +

¨

Q −

pε < 0 (27)

By the Gauss–Green formula applied on + × [0, s] and by exploiting the vanishing normal trace condition on ∂+ × (0, M), 
we obtain that for every s ∈ (0, M), there holds:

ˆ

+

σ t
ε(x, s)dx −

ˆ

+

σ t
ε(x,0)dx =

¨

+×[0,s]

pε dx dt ≤ ∥pε∥L1(Q )

Thus, by integrating in s over (0, M) and taking into account (27), we deduce that
¨

Q +

f ∗(t,σ x
ε ) ≤ ε

¨

Q +

σ t
ε(x, t)dx dt ≤ M ε ∥pε∥L1(Q )

As f ∗(t, σ x
ε ) ≥ − f (t, 0) is minorized, we infer that 

˜
Q + f ∗(t, σ x

ε ) → 0 and that σ t
ε is bounded in L1(Q +). By the assumption 

iii) on f , this implies that {σ x
ε } is bounded and equi-integrable in L1(Q +), hence up to a subsequence, we may assume that 

σ x
ε ⇀ σ x in L1(Q +; RN ) for a suitable σ x . By the convexity of f ∗(t, ·), it is easy to show that the weak limit σ x satisfies 

f ∗(t, σ x) ≤ 0 a.e. in Q + . Let u ∈ L1(+) such that F (u) < +∞. Then we have u = α1A +β1+\A , where A is a subset of finite 
perimeter. We represent by νA the outward pointing normal to A, which is well defined a.e. on the essential boundary of 
A denoted ∂ A (its essential boundary).

Considering Eq. (26), in order to show that p ∈ D , we are reduced to check that
¨

Q

p 1u dx dt ≤ F (u) =
ˆ

∂ A∩+

h(νA)dH1

Recalling that pε → p in L1(Q ) while pε = − divσε in Q + and 1u = 1 in Q − , we have

¨

Q

p 1u dx dt = lim
ε→0

⎛

⎜⎝
¨

Q −

pε dx dt −
¨

Q +

1u divσε

⎞

⎟⎠

≤ lim sup
ε→0

⎛

⎜⎝−
ˆ

A

σ t
ε(x,β)dx −

ˆ

+\A

σ t
ε(x,α)dx +

¨

∂ A×(α,β)

σ x
ε (x, t) · νA H1(dx) ⊗ dt

⎞

⎟⎠

≤
¨

∂ A×(α,β)

σ x(x, t) · νA H1(dx) ⊗ dt

where:

– in the second line we applied the generalized Gauss–Green formula on subset Q + taking into account the right-hand 
side inequality in (27) and the fact that σ x

ε · ν+ vanishes on ∂+ × (0, M),
– in the third line, we used the fact that σ t

ε(·, t) is nonnegative for t ∈ {α, β} together with the weak convergence of the 
normal trace of σε on ∂ A × (α, β).

Next we observe that, thanks to f ∗(t, σ x) ≤ 0, we have f ∗
c (t, σ x) = 0 and, by the Moreau–Fenchel inequality, there holds: 

σ x
ε (x, t) · νA ≤ f ∗∗

c (t, νA). We can therefore conclude that

¨

Q

p 1u dx dt ≤
¨

∂ A×(α,β)

f ∗∗
c (t,νA) H1(dx) ⊗ dt =

ˆ

∂ A

h(νA)dH1 = F (u) ✷
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5. Perspectives and open problems

5.1. Functionals involving vector-valued functions

The arguments in Section 2 have been developed merely in the case of scalar functions. Namely, the space X for which 
we construct an embedding in the extreme points of some convex compact subset has always been L1(+). An extension of 
the method working for vector-valued functions requires to construct another embedding. A very simple choice would be 
to associate with a vector field u ∈ L1(+, RN ) the Dirac mass at u(x), so that ϕ(u) becomes the Young measure on + × RN , 
defined by:

< ϕ(u),ψ >=
ˆ

+

ψ(x, u(x))dx , ψ ∈ C0(+ × RN)

If |+| = 1 and u(x) is assigned to stay in a given convex compact subset K ⊂ RN , then ϕ(u) is an extreme point in the 
set of probabilities measures on + × K whose first marginal agrees with the Lebesgue measure on +. However, the explicit 
computation of the convexified functional seems difficult in this framework. A possible issue would be to consider more 
involved tools of geometric measure theory as Cartesian currents or varifolds.

5.2. Functionals involving second-order gradients

Going back to the scalar case, many problems involve functionals of the kind

F (u) =
ˆ

+

f (∇u,∇2u)dx

being f (z, M) : RN × RN×N
sym a function convex in M , but not in z. Applying the convexification procedure like in Section 3

seems to be a nice perspective in this context; it will involve the curvature tensor at each point (x, u(x)) of the graph of u.

5.3. Munford–Shah functional

The free discontinuity problems have been a late motivation for the convexification recipe presented in this paper. The 
goal was to prove the optimality of some specific configurations for the image segmentation problem described hereafter. 
Let + be a bounded and Lipschitz domain of R2 and g : + → [0, 1] (grey-level data).

inf
u∈S B V (+)

⎧
⎪⎨

⎪⎩

ˆ

+\Su

1
2
|∇u|2 dx + H1(Su) + 1

2

ˆ

+

|u − g(x)|2 dx

⎫
⎪⎬

⎪⎭
(P)

This setting turns out to be well posed (existence of at least one minimizer) in the space S B V (+) of functions u ∈ L1(+)

whose distributional gradient Du consists of a regular part ∇u (coinciding with the a.e. defined gradient) and a singular 
part concentrated on the jump set Su , which is a rectifiable one-dimensional (unknown) subset of +, whose total length is 
denoted by H1(Su). A more mechanical formulation of (P) (popular in fracture mechanics) reads

inf

⎧
⎪⎨

⎪⎩

ˆ

+\K

1
2
|∇u|2 dx + H1(K ) + 1

2

ˆ

+

|u − g(x)|2 dx, K closed subset ⊂ + , u ∈ C1(+ \ K )

⎫
⎪⎬

⎪⎭

As the source term g satisfies 0 ≤ g ≤ 1, by using a trivial truncation argument, one checks easily that the infimum 
of (P) is unchanged if restricted to competitors u taking values in [0, 1]. Accordingly, we consider the metric space X =
L1(+; [0, 1]), on which we define the functional

F (u) :=

⎧
⎪⎨

⎪⎩

ˆ

+\Su

1
2
|∇u|2 dx + H1(Su) + 1

2

ˆ

+

|u − g(x)|2 dx if u ∈ S B V (+; [0,1])

+∞ otherwise

Then F turns out to be coercive and l.s.c. Recalling the construction in Section 3 (see also Remark 4.3), we can define a 
convex functional G on L∞(+ × [0, 1]) by setting:



220 G. Bouchitté, M. Phan / C. R. Mecanique 346 (2018) 206–221

G(v) = sup
g∈L∞(+×[0,1])

⎧
⎪⎨

⎪⎩

¨

+×[0,1]

g v dx dt − F ∗
0(g)

⎫
⎪⎬

⎪⎭
, F ∗

0(g) = sup
u∈X

⎧
⎪⎨

⎪⎩

¨

+×[0,1]

g(x, t)1u dx dt − F (u)

⎫
⎪⎬

⎪⎭

so that G(1u) = F (u) for every u ∈ X and inf(P) = inf {G(v) : v ∈ L∞(+ × [0,1]; [0,1])}.
Unfortunately, this functional G cannot be recovered by using the co-area formula (17) and, to our knowledge, no explicit 

formula for G is available. Alternatively, in [8], another convex l.s.c. functional J was used such that J ≤ G , but satisfying 
J (1u) = G(1u) = F (u) for every u ∈ X . Although it is not known whether or not J shares the same infimum as G , a duality 
scheme applied to J has been unexpectedly useful for checking the optimality of some competitors for problem (P) (see 
many examples in [8]). In this framework, the dual problem reads as follows:

sup

⎧
⎨

⎩−
ˆ

+

σ t(x,0)dx , σ ∈ K , divσ = 0 on + × [0,1] , σ x · ν+ = 0 on ∂+ × [0,1]

⎫
⎬

⎭ (Q)

where the convex constraint σ ∈ K splits into the two conditions:

i)
1
2
|σ x|2 ≤ σ t + 1

2
|t − g(x)|2 a.e. in + × [0, 1],

ii)

∣∣∣∣∣∣

t2ˆ
t1

σ x(x, s)ds

∣∣∣∣∣∣
≤ 1 a.e. x ∈ + and for every (t1, t2) ∈ [0, 1]2.

The second condition takes into account the jump energy in F (u) and is non-local. The functional J defined in B V (+ ×
R; [0, 1]) can be recovered by duality:

J (v) = sup

⎧
⎨

⎩

¨

+×R

(Dv · σ ) : σ ∈ K , σ ∈ C1(+ × R)

⎫
⎬

⎭

As claimed before, this convex functional satisfies J (1u) = F (u), whereas J (v) < +∞ implies that v(x, ·) is non-increasing. 
It is then possible to prove:

Proposition 5.1. Let g ∈ L∞(+; [0, 1]). Then it holds inf(P) ≥ sup(Q) with equality if, for an admissible pair (u, σ ), one has

σ (x, u(x)) = (∇u(x),
1
2
(|∇u|2 − |u − g|2)) a.e. x ∈ +

u+(x)ˆ

u−(x)

σ x(x, t) · νu = 1 H1 a.e. x ∈ Su

(28)

where u± denote the upper and lower approximate limits of u and Su = {u+ > u−}.

Let us notice that the latter result is useful merely when it is possible to guess particular pairs (u, σ ) satisfying conditions 
(28). When a competitor u is candidate to be a global minimizer, finding a σ provides a sufficient condition of optimality. 
This calibrating vector field σ , if it exists, is determined on the graph of u by relations (28). The difficulty is to extend 
it outside the graph of u while preserving the constraints i) and ii) and the divergence-free condition. We refer to [8]
for explicit constructions in case of particular Dirichlet boundary data. Unfortunately, a calibration field for proving the 
optimality of a function of crack tip type could not yet be found. A very challenging issue that will be worth for further 
investigations is the following.

Conjecture. The following equality holds: inf(P) = sup(Q).

Postulating a priori the validity of such a conjecture, numerical schemes based on a primal–dual algorithm are actu-
ally used to solve problem (P) (see [21]). To our knowledge, no numerical gap disproving the conjecture has ever been 
evidenced.
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