G. Allaire, S. Clerc, and S. , Kokh A five-equation model for the numerical simulation of interfaces in two-phase flows CRAS, Série I 331, pp.1017-1022, 2000.

, A five-equation model for the numerical simulation of interfaces between compressible fluids, J. Comp. Phys, vol.181, pp.577-616, 2002.

L. Ambrosio and G. Crippa, Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields. Transport equations and multi-D hyperbolic conservation laws, Lect. Notes Unione Mat. Ital, vol.357, issue.5, 2008.

M. R. Baer and J. W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials, International Journal of Multiphase Flow, vol.12, issue.6, pp.861-889, 1986.
DOI : 10.1016/0301-9322(86)90033-9

D. Bresch, B. Desjardins, J. M. Ghidaglia, E. Grenier, and M. Hilliairet, Multifluid models including compressible fluids. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, p.52, 2018.

D. Bresch, P. B. Mucha, and E. Zatorska, Finite-Energy Solutions for Compressible Two-Fluid Stokes System

G. Crippa and C. De-lellis, Existence, Uniqueness, Stability and Differentiability Properties of the Flow Associated to Weakly Differentiable Vector Fields, J. reine angew. Math, vol.616, pp.15-46, 2008.

S. Dallet, A comparative study of numerical schemes for the Baer- Nunziato model Preprint, p.1412148, 2016.

R. Denk, M. Hieber, and J. Prüss, Optimal L p -L q -estimates for parabolic boundary value problems with inhomogeneous data, Mathematische Zeitschrift, vol.319, issue.4, pp.193-224, 2007.
DOI : 10.1007/978-3-0346-0419-2

R. J. Diperna and P. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Inventiones Mathematicae, vol.307, issue.3, pp.511-547, 1989.
DOI : 10.1007/BFb0061716

D. Drew and S. L. Passman, Theory of multicomponent fluids, Applied Math Sciences, vol.135, p.135, 1999.
DOI : 10.1007/b97678

E. , Compressible Navier???Stokes Equations with a Non-Monotone Pressure Law, Journal of Differential Equations, vol.184, issue.1, pp.97-108, 2002.
DOI : 10.1006/jdeq.2001.4137

E. , Dynamics of viscous compressible fluids, Oxford Lecture Series in Mathematics and its Applications, 2004.
DOI : 10.1093/acprof:oso/9780198528388.001.0001

E. Feireisl, R. Klein, A. Novotn´ynovotn´y, and E. Zatorska, On singular limits arising in the scale analysis of stratified fluid flows, Mathematical Models and Methods in Applied Sciences, vol.89, issue.03, pp.419-443, 2016.
DOI : 10.1080/03605300500361487

URL : https://hal.archives-ouvertes.fr/hal-01313107

E. Feireisl and A. Novotn´ynovotn´y, Singular limits in thermodynamics of viscous fluids, Birkhäuser Verlag. Advances in Mathematical Fluid Mechanics, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01284077

E. Feireisl, A. Novotn´ynovotn´y, and H. Petzeltová, On the Existence of Globally Defined Weak Solutions to the Navier???Stokes Equations, Journal of Mathematical Fluid Mechanics, vol.3, issue.4, pp.358-392, 2001.
DOI : 10.1007/PL00000976

URL : https://hal.archives-ouvertes.fr/hal-01283028

E. Feireisl, A. Novotn´ynovotn´y, and H. Petzeltová, On the domain dependence of solutions to the compressible Navier-Stokes equations of a barotropic fluid, Mathematical Methods in the Applied Sciences, vol.3, issue.1, pp.1045-1073, 2002.
DOI : 10.1007/978-1-4612-1015-3

URL : https://hal.archives-ouvertes.fr/hal-01284050

V. Guillemaud, Modélisation et simulation numérique desécoulementsdesécoulements diphasiques par une approche bifuidè a deux pressions, 2007.

G. P. Galdi, An introduction to the mathematical theory of the Navier- Stokes equations. Steady-state problems, 2011.

M. Ishii and T. Hibiki, Thermo-fluid dynamics of two-phase flow, 2006.

P. Lions, Mathematical topics in fluid mechanics, Compressible models. Oxford Science Publications. Oxford Lecture Series in Mathematics and its Applications 10, 1998.

D. Maltese, M. Michálek, P. B. Mucha, A. Novotn´ynovotn´y, M. Pokorn´ypokorn´y et al., Existence of weak solutions for compressible Navier???Stokes equations with entropy transport, Journal of Differential Equations, vol.261, issue.8, pp.4448-4485, 2016.
DOI : 10.1016/j.jde.2016.06.029

URL : https://hal.archives-ouvertes.fr/hal-01810433

A. Novotn´ynovotn´y and I. Stra?kraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and its Applications 27, 2004.

A. Novotny and M. Pokorny, Weak solutions for some compressible multicomponent fluid models https

A. Vasseur, H. Wen, and C. Yu, Global weak solution to the viscous twofluid model with finite energy