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Abstract

This paper is devoted to the link between the Fisher Information Matrix invertibility and the observ-

ability of a parameter to be estimated in a nonlinear regression problem.
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I. Introduction

In Signal Processing [1], in Target Motion Analysis [2], a large class of measurements can

be modelled as

X = h(θ) + ε (1)

where X is the available measurement vector (element of Rn), θ is the unknown deter-

ministic parameter (lying in Rd) and h(.) is a (known) nonlinear mapping from Rd to Rn.

The vector ε represents the additive measurement noise.

Whatever the estimation technique employed (Least Squares, Maximum Likelihood, ...),

the observability of parameter θ must be investigated.

Most of the time, the analysis of observability is a tough task, and many authors suggest

to declare that θ is observable if the Fisher Information Matrix (FIM) of θ given X, under

Gaussian hypothesis concerning ε, is nonsingular at θ (see, for example, [2] page 168).

Intuitively (and practically), it turns out that this way is sufficient. But it is legitimate

to wonder about the meaning of that analysis: Observability being a deterministic notion,

why use a statistical tool (the FIM) to establish its status? Why restrain oneself to the

Gaussian law? Would the conclusion be the same if the FIM was computed for another

law?

Parts of answers can be found in Jazwinski’s book ([3] page 231) but linear Gaussian cases

are concerned.

The aim of this paper is to answer these questions by establishing clearly the link between

the status of the FIM (singular or nonsingular) under a large class of probability laws and

the status of the observability, i.e. in nonlinear and non-Gaussian cases.

The coming section recalls some classical definitions of observability. In the third section,
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we give a general form of the FIM. Some pathologic (but still relevant) cases are ana-

lyzed in Section IV. The last section gives the main result, after presenting the necessary

mathematical tools.

II. Observability Concepts

There are several ways to define the observability concept: it can be a global one (for all

the vectors of Rd), or a local one (for a special θ).

We recall the three major definitions of observability.

Definition 1. The noise-free system X = h(θ) is simply observable at θ0 if

∀θ ∈ Rd, {θ 6= θ0} ⇒ {h(θ) 6= h(θ0)} (2)

Definition 2. The noise-free system is (simply) observable if

∀θ, ∀θ′ ∈ Rd, {θ 6= θ′} ⇒ {h(θ) 6= h(θ′)} (3)

Definition 3. The noise-free system is locally observable at θ0 if

∃Uθ0 ⊂ Rd (open subset containing θ0),∀θ ∈ Uθ0 , {θ 6= θ0} ⇒ {h(θ) 6= h(θ0)} (4)

Remark 1.

a) These definitions come from the theory of dynamic systems in which the parameter θ

changes in time and must be hence denoted θ(t). For such systems, there exists some other

definitions of observability to take into account the trajectory of θ(t) [4].

b) When h(.) is a linear mapping (in practice a matrix), local observability and simple

observability coincide.

III. Fisher Information Matrix

In the sequel, we assume that the behavior of the vector ε is described by a probability

density function (pdf), say pε, whose support is Rn. The vector X has its own pdf,

denoted pX . It depends on θ while its support is independent of it 1. More precisely, the

1This assumption is necessary to compute the Fisher Information Matrix.

October 14, 2006 DRAFT



4

relationship between them is given by

pX(ν|θ) = pε(ν − h(θ)). (5)

The likelihood function of θ is nothing else than the probability density function of X

given θ evaluated at X :

Lθ(X) , pX(X|θ). (6)

The Fisher Information Matrix (FIM) is

F θ(X) , Covθ{∇θ ln [Lθ(X)]}
= Eθ

{∇θ ln[Lθ(X)]∇T
θ ln[Lθ(X)]

}
.

(7)

The Cramèr-Rao Lower Bound (CRLB) of any unbiased estimator of θ is the inverse of

F θ(X).

If ε is a 0-mean Gaussian vector whose covariance matrix is Rε (assumed invertible), the

FIM can be expressed as follows

F θ(X) = ∇θh(θ)R−1
ε ∇T

θ h(θ). (8)

Under more general assumptions, we can still give a close form for the FIM .

Theorem 1.

F θ(X) = ∇θh(θ)Wε∇T
θ h(θ)

where Wε , E{∇ν ln [pε(ν)]ν=ε∇T
ν ln [pε(ν)]ν=ε}

(9)

Proof :

For the dummy variable z, we have

∇θ ln [pX(z|θ)] = ∇θ ln [pε(z − h(θ))]

= ∇θh(θ)∇ν ln [pε(ν)]ν=z−h(θ) .

(10)

Hence

∇θ ln [Lθ(X)] = ∇θh(θ)∇ν ln [pε(ν)]ν=X−h(θ) . (11)

As a consequence, the FIM is readily written as

F θ(X) = ∇θh(θ)Eθ{∇ν ln [pε(ν)]ν=X−h(θ)∇T
ν ln [pε(ν)]ν=X−h(θ)}∇T

θ h(θ) (12)
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The middle term above is

Eθ{∇ν ln [pε(ν)]ν=X−h(θ)∇T
ν ln [pε(ν)]ν=X−h(θ)} = E{∇ν ln [pε(ν)]ν=ε∇T

ν ln [pε(ν)]ν=ε}.
(13)

¤
In the sequel, Wε is assumed nonsingular. The following theorem gives us a sufficient

condition for that.

Theorem 2. If ∇νpε(ν) is a continuous function then Wε is nonsingular.

Proof :

Suppose that Wε is singular. So there exists a non null vector u ∈ Rd such that uT Wεu = 0,

i.e. ∃u 6= 0 s.t. uT Wεu = 0

⇔ ∃u 6= 0 s.t. uT

[∫

Rd

∇νpε(ν)∇T
ν pε(ν)

1

pε(ν)
dν

]
u = 0

⇔ ∃u 6= 0 s.t.

∫

Rd

[
uT∇νpε(ν)√

pε(ν)

]2

dν = 0

(14)

Since ∇θpε(θ) is a continuous function, this last statement is equivalent to

∃u 6= 0 s.t. uT∇νpε(ν) = 0,∀ν ∈ Rd

⇔ ⋂
ν∈Rd

ker{∇νpε(ν)∇T
ν pε(ν)} 6= {~0}. (15)

Let r be the dimension of the vector space
⋂

ν∈Rd

ker{∇νpε(ν)∇T
ν pε(ν)}. In a suitable basis,

the last (d− r) components of ∇νpε(ν) will be null, i.e.

∇νpε(ν) =

[
∂pε(ν)

∂ν1

,
∂pε(ν)

∂ν2

, · · · ,
∂pε(ν)

∂νr

, 0, · · · , 0

]T

∀ν ∈ Rd (16)

which means that in that basis, pε(ν) = pε(ν1, ν2, ..., νr). This contradicts the fact that
∫
Rd pε(ν)dν = 1. ¤

Remark 2.

If ε is Gaussian of covariance matrix R, it is readily shown that Wε = R−1
ε .
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IV. Pathologic cases

A. Case I :

We consider the two-dimensional measurement (n = d = 2)

X ,


 X1

X2


 =


 θ3

1 + θ2

θ3
1 − θ2


 +


 ε1

ε2


 . (17)

Obviously, the associated noise-free system is simply observable at any θ = (θ1, θ2)
T .

Under the assumption that εi ∝ G(0, 1) and independent, the FIM is

F θ(X) =


 9θ4

1 0

0 2


 (18)

which is singular at any θ such that θ1 = 0.

Remark 3.

a) In similar cases, we can prove that no unbiased estimator of θ exists since for such

estimators the CRLB is the inverse of the FIM. This fact is met in array processing for

the estimation of the end-fire bearing [5].

b) The singularity of the FIM at some points of Rd can cause some problems during the

Gauss Newton routine for which the Hessian is approximated by the FIM evaluated at the

point of the current iteration. The palliative is the augmentation of the FIM by some αId

as suggested in the Levenberg-Marquardt method [6].

B. Case II

This counter-example comes from [7] p. 479. Let’s consider the two-dimensional measure-

ment vector

X ,


 X1

X2


 =


 aθ − sin θ

cosθ


 +


 ε1

ε2


 , with a ∈]0, 1[ (19)

F θ(X) = 2a

(
a + 1

2a
− cos θ

)
(20)

Hence, the FIM is never equal to 0, but still the pairs (θ1, θ2) defined by




θ1 , 2kπ + τ

θ2 , 2kπ − τ
(21)

DRAFT October 14, 2006



7

are undistinguishable, τ being the root of the equation τ =
sin τ

a
. The parameter θ is not

simply observable, but locally observable.

V. Analysis

A. Mathematical Tools

We need two types of tools : one from the linear algebra theory and the second one from

the differential calculus.

Theorem 3. Let A a (n× d) matrix (d ≤ n). The following statements are equivalent :

(i) AT A is invertible.

(ii) ∃S a real nonsingular symmetric (n× n) matrix such that AT SA is nonsingular.

(iii) ∀S real nonsingular symmetric (n× n) matrix, AT SA is nonsingular.

(iv) Rank(A) = d.

Definition 4. h : Rd → Rn is an immersion at θ0 if the rank of ∇θh(θ0) is equal to d (see

[7] p. 479).

Theorem 4. h : Rd → Rn is an immersion at θ0 if there exists an open set Uθ0 containing

θ0 such that the rank of ∇θh(θ) is equal to d, whatever θ in Uθ0.

See [8] for the proof.

Proposition 1. If h : Rd → Rn is an immersion, than h is locally injective, i.e. it exists

an open set Uθ0 of Rd containing θ0 such that h : Uθ0 ⊂ Rd → Rn is injective.

See [8] for the proof.

Remark 4. If h is a linear mapping i.e. h(θ) = A(θ), then ∇θh(θ1) = ∇θh(θ2) = AT for

any pair (θ1, θ2). Hence h is locally injective as well as injective anywhere.

B. The main result

The exploitation of the previous theorems and of the last proposition yields straightfor-

wardly the following

October 14, 2006 DRAFT



8

Theorem 5. Let us consider the measurement equation X = h(θ) + ε associated to the

noise-free system X = h(θ). If the support of pε is Rn itself and if the FIM is nonsingular

at θ0 - or, equivalently, if ∇θh(θ0)∇T
θ h(θ0) is nonsingular - then the noise-free system is

locally observable at θ0.

Proof :

We know that ∇θh(θ)Wε∇T
θ h(θ) is nonsingular. Using Theorem 4, statement (iv), with

A ≡ ∇θh(θ0) and S ≡ W , we conclude that Rank(∇θh(θ0)) is equal to d ; hence h is an

immersion.

Now, thanks to Proposition 1, we know that h is locally injective, and as a consequence,

satisfies Definition 3. ¤

Remark 5.

a) The first pathological case forbids the converse.

b) Remark 4 proves that local observability is equivalent to simple observability for linear

system : if h is linear, i.e. h(θ0) = Aθ0, then ∇θh(θ0)∇T
θ h(θ0) = AT A, ∀θ0. In that case,

the system is observable iff AT A is nonsingular, or equivalently, iff AT WεA (the FIM) is

nonsingular.

VI. Conclusion

The link between the invertibility of the FIM and the observability status has been unam-

biguously established, for a large class of probability laws in nonlinear regression problems.

This theoretical result can help the study of observability.
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