HAL
open science

Solving Unbounded Quadratic BSDEs by a Domination Method *

Khaled Bahlali

To cite this version:

Khaled Bahlali. Solving Unbounded Quadratic BSDEs by a Domination Method *. 2019. hal01972711v1

HAL Id: hal-01972711
 https://univ-tln.hal.science/hal-01972711v1

Preprint submitted on 7 Jan 2019 (v1), last revised 26 Mar 2019 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Solving Unbounded Quadratic BSDEs by a Domination Method *

Khaled Bahlali
Université de Toulon, IMATH, EA 2134, 83957 La Garde Cedex, France.

Abstract

We introduce a domination argument which asserts that: if we can dominate the parameters of a quadratic backward stochastic differential equation (QBSDE) with continuous generator from above and from below by those of two BSDEs having ordered solutions, then also the original QBSDE admits at least one solution. This result is presented in a general framework: we do not impose any integrability condition on none of the terminal data of the three involved BSDEs, we do not require any constraint on the growth nor continuity of the two dominating generators. As a consequence, we establish the existence of a maximal and a minimal solution to BSDEs whose coefficient H is continuous and satisfies $|H(t, y, z)| \leq$ $\alpha_{t}+\beta_{t}|y|+\theta_{t}|z|+f(|y|)|z|^{2}$, where $\alpha_{t}, \beta_{t}, \theta_{t}$ are positive processes and the function f is positive and locally bounded on \mathbb{R}. This is done with unbounded terminal value. We cover the classical QBSDEs where the function f is constant and also the cases where the generator has super linear growth such as $y|z|, e^{|y|^{k}}|z|^{p}, e^{e|y|}|z|^{2},(k \geq 0,0 \leq p<2)$ and so on. In contrast to the works $[12,14,23,25,27]$, we get the existence of a solution, moreover we cover the BSDEs with at most linear growth (take $f=0$), in particular we extend the results of [24] and [26]. The existence and uniqueness of solutions are also established for BSDEs driven by $f(y)|z|^{2}$ when f is merely locally integrable on \mathbb{R}.

AMS 2000 Classification subjects:
Keywords : Superlinear backward stochastic differential equations, Quadratic backward stochastic differential equations, unbounded solutions. maximal and a minimal

1 Introduction

Let $\left(W_{t}\right)_{0 \leq t \leq T}$ be a d-dimensional Brownian motion defined on a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We denote by $\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}$ the natural filtration of W augmented with \mathbb{P}-negligible sets. Let $H(t, \omega, y, z)$ be a real valued \mathcal{F}_{t}-progressively measurable process defined on $[0, T] \times$ $\Omega \times \mathbb{R} \times \mathbb{R}^{d}$. Let ξ be an \mathcal{F}_{T}-measurable \mathbb{R}-valued random variable. Consider the BSDE

$$
Y_{t}=\xi+\int_{t}^{T} H\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}, \quad 0 \leq t \leq T \quad(e q(\xi, H))
$$

ξ is called the terminal value and H is called the generator or the coefficient. A BSDE with data (ξ, H) will be labeled $e q(\xi, H)$ or $\operatorname{BSDE}(\xi, H)$ or $\operatorname{BSDE}(\xi, H)$.

[^0]Definition 1.1. (i) We say that eq($\xi, H)$ is quadratic if H has at most a quadratic growth in its z-variable.
(ii) A solution to eq (ξ, H) is a process (Y, Z) which satisfies eq (ξ, H) on $[0, T]$ and such that Y is continuous, $\int_{0}^{T}\left|Z_{s}\right|^{2} d s<\infty$ a.s and $\int_{0}^{T}\left|H\left(s, Y_{s}, Z_{s}\right)\right| d s<\infty$ a.s.
(iii) A positive solution is a solution (Y, Z) such that $Y_{t} \geq 0$. We Symmetrically define a negative solution. A bounded solution is a solution (Y, Z) such that Y is bounded
$e q(\xi, H)$ is related to partial differential equations (PDEs), optimal stochastic control and mathematical finance (risque measure, utility maximization, etc.). The Quadratic BSDEs were studied in many papers, among them one can cite the works $[7,9,12,14,15,19,21,23,25$, $27,30]$.

In this paper, we are concerned with the existence of solutions to BSDEs whose generator H satisfies $|H(t, y, z)| \leq \alpha_{t}+\beta_{t}|y|+\theta_{t}|z|+f(|y|)|z|^{2}$, where $\alpha_{t}, \beta_{t}, \theta_{t}$ are positive processes and the function f is positive on \mathbb{R}_{+}and locally bounded but not globally integrable on \mathbb{R}. We are motivated by the fact that the BSDEs driven by $H(t, y, z)=g\left(c_{t}, y\right)+f(|y|)|z|^{2}$ appears in stochastic differential utility, see [19]. This type of BSDEs are also related to quadratic PDEs appearing in financial markets, see [20]. Let us present another motivation : it has been recently shown in $[7,9]$ that the BSDEs driven by a generator H satisfying $|H(t, y, z)| \leq$ $\alpha+\beta|y|+\theta|z|+f(|y|)|z|^{2}$ have solutions when f is globally integrable and α, β, θ are constant. However, these two works can not cover the classical BSDEs driven by $|z|^{2}$, since they assume that f is integrable on \mathbb{R}. Thus, the following questions naturally arise:

1) Are there BSDEs whose generator H satisfying $|H(t, y, z)| \leq \alpha_{t}+\beta_{t}|y|+\theta_{t}|z|+f(|y|)|z|^{2}$ that have solutions without assuming the global integrability of f ?
2) If yes, what integrability condition we should require on the terminal value ξ ?

The following example gives a positive answer to the first question. It moreover shows that neither global integrability of f nor integrability of ξ are necessary to the existence of solutions.

Example 1.1. Consider the BSDE

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} \mathbb{1}_{\mathbb{R}_{+}}\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s-\int_{t}^{T} Z_{s} d W_{s}, \quad 0 \leq t \leq T \tag{1.1}
\end{equation*}
$$

where for a set $A, \mathbb{1}_{A}$ denotes the indicator function of A.
Equation (1.1) is not covered by the works $[12,14,19,15,21,23,25,27,30]$, since $\mathbb{1}_{\mathbb{R}_{+}}$is neither constant nor continuous. It is also not covered by the works [7, 9, 19], since the function $\mathbb{1}_{\mathbb{R}_{+}}$is not globally integrable. Nevertheless, equation (1.1) admits a solution without any integrability condition on ξ. Indeed, the function $u(y):=\frac{1}{2}\left(e^{2 y}-1\right) \mathbb{1}_{\mathbb{R}_{+}}(y)+y \mathbb{1}_{\mathbb{R}_{-}^{*}}(y)$ belongs to the Sobolev space $W_{1, \text { loc }}^{2}(\mathbb{R})$ and solves the differential equation $\frac{1}{2} u^{\prime \prime}(y)-\mathbb{1}_{\mathbb{R}_{+}}(y) u^{\prime}(y)=0$ on \mathbb{R}^{*}. Therefore, using Itô-Krylov's formula for BSDEs (see [7, 9]) one can show that equation (1.1) has a solution if and only if the following equation has a solution.

$$
\begin{equation*}
\bar{Y}_{t}=u(\xi)-\int_{t}^{T} \bar{Z}_{s} d W_{s}, \quad 0 \leq t \leq T \tag{1.2}
\end{equation*}
$$

By Dudley's representation theorem [18], equation (1.2) has a solution without any integrability condition on $u(\xi)$. Since u is a one to one function from \mathbb{R} onto \mathbb{R}, we deduce that equation (1.1) has a solution without any integrability of ξ. If moreover, $u(\xi)$ is integrable then equation (1.1) has a unique solution (Y, Z) such that $u(Y)$ belongs to class (D). Other examples will be presented later.

The aim of this paper is to introduce a domination method which allows to solve $e q(\xi, H)$ when ξ is unbounded and $|H(t, y, z)| \leq \alpha_{t}+\beta_{t}|y|+\theta_{t}|z|+f(|y|)|z|^{2}$, where $\alpha_{t}, \beta_{t}, \theta_{t}$ are positive processes and the function f is positive on \mathbb{R}_{+}and locally bounded but not globally integrable on \mathbb{R}. Our strategy is divided into five stages each of which has its own interest:

In the first step (i), we establish existence, uniqueness and comparison of solutions to BSDEs driven by $f(y)|z|^{2}$ when f is locally integrable, this covers the classical case where f is constant. It will be shown that when $u_{f}(\mathbb{R})=\mathbb{R}$, then the $\operatorname{BSDE}\left(\xi, f(y)|z|^{2}\right)$ has a solution without any integrability condition on the terminal value, and when $u_{f}(\mathbb{R}) \neq \mathbb{R}$, then the condition $u_{f}(\xi)$ integrable is necessary to the existence of solutions for $e q\left(\xi, f(y)|z|^{2}\right)$. We also show that the uniqueness as well as the comparison hold for $\operatorname{BSDE}\left(\xi, f(y)|z|^{2}\right)$ in the class of solutions such that $u_{f}(Y)$ belongs to class (D).

In order to explain the other steps, we precise some notation, definitions and assumptions.
Some notation. For given real numbers a and b, we set $a \wedge b:=\min (a, b), a \vee b:=\max (a, b)$, $a^{-}:=\max (0,-a)$ and $a^{+}:=\max (0, a)$.

For given positive processes α and β we denote $\xi_{\alpha, \beta}:=\left(|\xi|+\int_{0}^{T} \alpha_{s} d s\right) e^{\int_{0}^{T} \beta_{s} d s}$.
We define $\xi_{\alpha, \beta}^{+}$and $\xi_{\alpha, \beta}^{-}$in likewise manner.
For $p>0$, we denote by $\mathbb{L}_{l o c}^{p}(\mathbb{R})\left(\mathbb{L}_{l o c}^{p}\right.$ in short) the space of (classes) of functions u defined on \mathbb{R} which are p-integrable on bounded set of \mathbb{R}. We also denote,
$W_{p, l o c}^{2}:=$ the Sobolev space of (classes) of functions u defined on \mathbb{R} such that both u and its generalized derivatives u^{\prime} and $u^{\prime \prime}$ belong to $\mathbb{L}_{l o c}^{p}(\mathbb{R})$.
$\mathcal{C}:=$ the space of continuous and \mathcal{F}_{t}-adapted processes.
$\mathcal{S}^{p}:=$ the space of continuous, \mathcal{F}_{t}-adapted processes φ such that $\mathbb{E}\left(\sup _{0 \leq t \leq T}\left|\varphi_{t}\right|^{p}\right)<\infty$.
$\mathcal{L}^{2}:=$ the space of \mathcal{F}_{t}-adapted processes φ satisfying $\int_{0}^{T}\left|\varphi_{s}\right|^{2} d s<+\infty \mathbb{P}$-a.s.
$\mathcal{M}^{p}:=$ the space of \mathcal{F}_{t}-adapted processes φ satisfying $\mathbb{E}\left[\left(\int_{0}^{T}\left|\varphi_{s}\right|^{2} d s\right)^{\frac{p}{2}}\right]<+\infty$.
We say that the process $\varphi:=\left(\varphi_{s}\right)_{0 \leq s T}$ belongs to class (D) if $\sup _{0 \leq \tau \leq T}\left|Y_{\tau}\right|<\infty$, where the supremum is taken over all stopping times τ such that $\tau \leq T$.
$B M O$ is the space of uniformly integrable martingales M satisfying $\sup _{\tau}\left\|\mathbb{E}\left(\left|M_{T}-M_{\tau}\right| / \mathcal{F}_{\tau}\right)\right\|_{\infty}<$ ∞, where the supremum is taken over all stopping times τ.

For a given locally integrable function f defined on \mathbb{R}, we put

$$
\begin{equation*}
u_{f}(y): \int_{0}^{y} \exp \left(2 \int_{0}^{x} f(r) d r\right) d x \tag{1.3}
\end{equation*}
$$

The properties of the function u_{f} are given in Lemma 5.1 of Apendix.
Consider the following assumptions.
(A1) H is continuous in (y, z) for a.e (t, ω) and satisfies,

$$
|H(t, y, z)| \leq \alpha_{t}+\beta_{t}|y|+f(|y|)|z|^{2}
$$

where α_{t}, β_{t} are some $\left(\mathcal{F}_{t}\right)$-adapted processes which are positive and f is a real valued function which is continuous, increasing and positive on \mathbb{R}_{+}
(A2)

$$
u_{f}\left(\xi_{\alpha, \beta}\right) \text { is integrable, }
$$

where u_{f} is defined by (1.3).
In step (ii), we introduce the domination argument (Lemma 3.1 below) which is an abstract result that gives the existence of solutions to BSDEs without integrability condition on the terminal value. It asserts that: if $\left(\xi_{1}, H_{1}\right)$ and $\left(\xi_{2}, H_{2}\right)$ are two BSDEs which respectively admit two solutions $\left(Y_{1}, Z_{1}\right)$ and $\left(Y_{2}, Z_{2}\right)$ such that $\left(\xi_{1}, H_{1}, Y_{1}\right) \leq\left(\xi_{2}, H_{2}, Y_{2}\right)$, then any Quadratic $\operatorname{BSDE}(\xi, H)$ with continuous generator and satisfying $\left(\xi_{1}, H_{1}\right) \leq(\xi, H) \leq\left(\xi_{2}, H_{2}\right)$ has at least one solution (Y, Z) such that $Y_{1} \leq Y \leq Y_{2}$. Moreover, among all solutions which lie between Y_{1} and Y_{2}, there are a maximal and a minimal solution. The proof of this result do not need any a priori estimate nor approximation. It is based on the remarkable work [22] on the existence of reflected QBSDEs without any integrability condition on the terminal value. Actually, we derive the existence of our QBSDE from a suitable reflected QBSDE.

In steps $(i i i)-(i v)$, we use the domination argument to show that when assumptions (A1), (A2) are satisfied then $e q(\xi, H)$ admits a maximal and a minimal solution satisfying some conditions which will be precised later. We cover the results obtained in [12, 14, 23, 25] and also the cases where the generator has super linear growth such as $y|z|$, $e^{|y|}|z|^{p} \quad(0 \leq p<2)$ $e^{|y|}|z|^{2}$ and more generally the case $|H(y, z)| \leq \alpha_{t}+\beta_{t}|y|+g(|y|)|z|^{p}+f(|y|)|z|^{2}$ where f and g are continuous, increasing and positive on \mathbb{R}_{+}, and $0 \leq p<2$. In all these cases, the existence of solutions is established with an unbounded terminal value. Although the case where the function f is globally integrable is not covered by assumption (A1), one can again use the domination argument to show that if H satisfies (A1) with f globally integrable and $\xi_{\alpha, \beta}$ is integrable, then $e q(\xi, H)$ has a maximal and a minimal solution; this extends the result of [7, 9] to the case where α, β are processes and ξ is merely in \mathbb{L}^{1}.

In step (v), we establish the existence of solutions to $e q(\xi, H)$ under the the following assumptions:
(A3) H is continuous in (y, z) for a.e (t, ω) and satisfies,

$$
|H(t, y, z)| \leq \alpha_{t}+\beta_{t}|y|+\theta_{t}|z|+f(|y|)|z|^{2}
$$

where α_{t}, β_{t} are some $\left(\mathcal{F}_{t}\right)$-adapted processes which are positive and f is a real valued function which is continuous, increasing and positive on \mathbb{R}_{+}

$$
\begin{equation*}
\sup _{\pi \in \sum} \mathbb{E}\left(\Gamma_{0, T}^{\pi} u_{f}\left(\xi_{\alpha, \beta}\right)\right):=\sup _{\pi \in \sum} \mathbb{E}\left(e^{\int_{0}^{T} \theta_{u} \pi_{u} d W_{u}-\frac{1}{2} \int_{0}^{T} \theta_{u}^{2}\left|\pi_{u}\right|^{2} d u} u_{f}\left(\xi_{\alpha, \beta}\right)\right)<+\infty \tag{A4}
\end{equation*}
$$

where $\sum:=\left\{\pi \in \mathcal{L}^{2},|\pi| \in\{0,1\}\right.$, a.e. and ess $\left.\sup _{\omega} \int_{0}^{T} \theta_{u}^{2}\left|\pi_{u}\right|^{2} d u<+\infty\right\}$.
In this case, we use again the domination argument to reduce the solvability of $e q(\xi, H)$ to that of $e q\left(u_{f}\left(\xi_{\alpha, \beta}\right), \theta_{t}|z|\right)$ and then to deduce the existence of solutions to $e q(\xi, H)$. It should be noted that the works $[7,9,12,14,19,15,23,25,27,30]$ consider only the case $\theta_{t}=0$. To the best of our knowlege, the case $\theta_{t} \neq 0$ is considered only in [9,21] and in the present paper. We emphasize that assumptions (A1)-(A2) are covered by (A3)-(A4). However, for the sake of clarity and to make the paper easy to read, we separately treat these two situations.

Let us now present our method and their advantages when $\theta_{t}=0$: In order to establish the existence of solutions, we first only assume (A1) then we prove that the solvability of $e q(\xi, H)$ is reduced to the positive solvability (i.e. $Y \geq 0)$ of the two $\operatorname{BSDEs} e q\left(u_{f}\left(\xi_{\alpha, \beta}^{+}\right), 0\right)$ and $e q\left(u_{f}\left(\xi_{\alpha, \beta}^{-}\right), 0\right)$ (see the proof of Proposition 3.1). We finally show that the latter two BSDEs have simultaneously positive solutions if and only if assumption (A2) is satisfied. This
shows how assumption (A2) is not a priori imposed here but is generated along the proof. Our method makes it possible to control more precisely the integrability condition we should impose to the terminal value.

Here are some other advantages of the domination method: instead of $e q(\xi, H)$, we only work with the dominating equations $e q\left(\xi_{1}, H_{1}\right)$ and $e q\left(\xi_{2}, H_{2}\right)$ which are more simple than the initial one (ξ, H). In contrast to the papers [12, 14, 27, 25, 30], our method allows to get the existence of a maximal and a minimal solution. It moreover allows to deal with all one dimensional BSDEs up to quadratic ones and seems unify their treatment. Note also that, the three involved terminal data ξ, ξ_{1} and ξ_{2} are not necessary integrable, the two dominating coefficients H_{1}, H_{2} are merely measurable and can have arbitrarily growth. Only $H(t, y, z)$ should be continuous on (y, z) and of at most quadratic growth in z. In return, the solutions lie in $\mathcal{C} \times \mathcal{L}^{2}$ and hence not necessary integrable.

We summarize the results of some previous works in the light of assumptions (A1)-(A2). The case where f is constant and α, β do not depend on ω has been considered in [25] where the existence of bounded solutions is established provided that the terminal value is bounded. In [14], the existence of solutions is obtained when α, β and f are constant $\left(f(y)=\frac{\gamma}{2}\right)$ provided that $\exp \left(\gamma|\xi| e^{\beta T}\right)$ is integrable. The authors of [12] consider the case where f is constant $\left(f(y)=\frac{\gamma}{2}\right)$ and established the existence of solutions when $\exp \left[\gamma\left(|\xi|+\int_{0}^{T} \alpha_{s} d s\right) e \int_{0}^{T} \beta_{s} d s\right]$ is integrable. In [21], the authors consider a generalized QBSDE and the function f is replaced by a continuous process r_{t}, the existence of solution is then obtained provided, when $\alpha=\beta=0$, that $\frac{\exp \left(C_{T}|\xi|\right)-1}{C_{T}} \mathbb{1}_{\left\{C_{T}>0\right\}}+|\xi| \mathbb{1}_{\left\{C_{T}=0\right\}}$, with $C_{T}=\sup _{s \leq T} r_{s}$. The authors of $[7,9]$ consider the case where α, β are constant and f is globally integrable and they established the existence of solutions in $\mathcal{S}^{2} \times \mathcal{M}^{2}$ when the terminal value is merely square integrable.

Let us briefly describe the principal methods used in some previous papers. When the function f is constant, two methods have been essentially developed in order to establish the existence of solutions. The first one is the monotone stability [12, 14, 25, 27]. The second approach is based on a fixed point argument and has been introduced in [30]. In the latter, the uniqueness is also obtained but it requires that the generator satisfies the so-called Lipschitzquadratic condition. These two methods use some a priori estimates and approximations which are sometimes difficult to obtain. It should be noted that, the papers [12, 14, 25, 27, 30] consider the cases where the terminal value is bounded or at least with some exponential moments. An alternative method was recently developed in [7, 9]. This method are based on the work [22] where the existence of reflected QBSDEs is established without any integrability of the terminal value. The idea, used in [7, 9], consists then in deriving the existence of BSDEs from the existence of a suitable reflected BSDEs when the solutions belong to $\mathcal{S}^{2} \times \mathcal{M}^{2}$.

We now compare our method with those of $[12,14,23,25,27,30]$. In the latter, the authors proceed as follows: they first impose some integrability (or boudedness) condition on the terminal value ξ. Next, they establish some a priori estimates for the solutions by using the integrability (or the boundedness) of ξ. This allows them to prove the existence of solutions by using a suitable approximation.

Our approach is completely different: in order to prove the existence of solutions, we only use Lemma 3.1 and some change of variables formulas. We do not need to establish any a priori estimates of the solutions. We do not need to construct any approximation. In contrast to the previous papers, the integrability of the terminal value is not a priori imposed but obtained by solving an inverse problem. In contrast to the works [12, 14, 23, 25, 27, 30], our result covers the BSDEs with at most linear growth, and in particular it extends the results of [26] and [24] by taking $f=0$.

The paper is organized as follows. In section 2, we establish the existence and uniqueness for the $\operatorname{BSDE}\left(\xi, f(y)|z|^{2}\right)$ when f is locally integrable on \mathbb{R}, we also give some examples of BSDEs which have solutions without any integrability of the terminal value ξ. In section 3 , we begin by introducing the domination argument then we use it to establish the existence of solutions to $e q(\xi, H)$ under conditions (A1)-(A2) and also under assumption (A3)-(A4). Some integrability properties are also established for the solutions of $e q(\xi, H)$ under additional assumptions which will be specified below in section 3. In section 4, we treat the BSDEs with at most logarithmic growth $y \ln |y|$. Using the domination argument and some change of variables, we show that these equations can be solved by using the quadratic BSDEs and vice-versa. Insection 5, some auxiliary results are given.

Since our approach consists in reducing the solvability of $e q(\xi, H)$ under assumptions (A1) [resp. (A3)] to the positive solvability $(Y \geq 0)$ of $e q\left(u_{f}\left(\xi_{\alpha, \beta}^{+}\right), 0\right)$ [resp. $\left.e q\left(u_{f}\left(\xi_{\alpha, \beta}^{+}\right), \theta_{t}|z|\right)\right]$, the following two propositions which study the existence of positive solutions to these two simple BSDEs are then useful.

1.1 Two basic BSDEs

The following proposition is useful in studying the solvability of $(e q(\xi, H)$ when assumption (A1) is satisfied. It characterizes the existence of positive solutions to a BSDE driven by a null generator.

Proposition 1.1. The $\operatorname{BSDE}(\zeta, 0)$.
I) According to Dudley's theorem [18], the following BSDE has a solution for any $\mathcal{F}_{T^{-}}$ measurable random variable ζ.

$$
\begin{equation*}
y_{t}:=\zeta-\int_{t}^{T} z_{s} d W_{s} \tag{1.4}
\end{equation*}
$$

Furthermore,
(i) If ζ is integrable, then equation (1.4) has a unique solution (y, z) such that y belongs to class (D) given by $Y_{t}=\mathbb{E}\left(\zeta / \mathcal{F}_{t}\right)$. Furthermore, z belongs to \mathcal{M}^{p} for each $0<p<1$.
(ii) If ζ is positive and (1.4) has a positive solution, then ζ is necessary integrable.

Proof Assertion (i) can be proved by using a usual localization and Fatou's lemma. We prove Assertion (ii). Dudley's representation theorem allows us to show that eq($\zeta, 0)$ has at least a solution (y, z) in $\mathcal{C} \times \mathcal{L}^{2}$. Since ζ is integrable, then $y_{t}:=\mathbb{E}\left(\zeta / \mathcal{F}_{t}\right)$ is a solution which belongs to class (D). It follows that the stochastic integral $\int_{0}^{\dot{0}} z_{s} d W_{s}$ is a uniformly integrable martingale. Using Proposition 4.7, Chap. IV of [29] (see also [16]) and the Burkholder-DavisGundy inequality we show that z belongs to \mathbb{M}^{p}, for each $0<p<1$. We shall prove that the process (y, z) we just constructed is actually the unique solution such that y belongs to class (D). Let $\left(y^{1}, z^{1}\right)$ and $\left(y^{2}, z^{2}\right)$ be two solutions such that y^{1} and y^{2} belong to class (D). It follows that $y^{1}-y^{2}$ belongs to class (D) and hence the stochastic integral $\left(\int_{0}^{t}\left(z_{s}^{1}-z_{s}^{2}\right) d W_{s}\right)_{0 \leq t \leq T}$ is a martingale in class (D). It follows that $y^{1}=y^{2}$. Using the Burkholder-Davis-Gundy inequality, we show that $\mathbb{E}\left[\left(\int_{0}^{T}\left|z_{s}^{1}-z_{s}^{2}\right|^{2}\right)^{p / 2}\right]=0$. Assertion (ii) is proved.

The following proposition, which is taken from [21] (Proposition 6.1 of [21]), gives a necessary and sufficient condition which ensures the existence of positive solutions to the BSDEs driven by the generator $\theta_{t}|z|$. This proposition is useful when assumption (A3) is satisfied.

Proposition 1.2. ([21], Proposition 6.1). The $\operatorname{BSDE}\left(\zeta, \theta_{t}|z|^{2}\right)$. Let ζ be a positive $\mathcal{F}_{T^{-}}$ measurable random variable. The BSDE

$$
\begin{equation*}
y_{t}=\zeta+\int_{t}^{T} \theta_{s}\left|z_{s}\right| d s-\int_{t}^{T} z_{s} d W_{s}, \quad t \leq T \tag{1.5}
\end{equation*}
$$

has a positive solution if and only if

$$
\begin{equation*}
\sup _{\pi \in \sum} \mathbb{E}\left(\Gamma_{0, T}^{\pi} \zeta\right):=\sup _{\pi \in \sum} \mathbb{E}\left(e^{\int_{0}^{T} \theta_{u} \pi_{u} d W_{u}-\frac{1}{2} \int_{0}^{T} \theta_{u}^{2}\left|\pi_{u}\right|^{2} d u} \zeta\right)<+\infty \tag{1.6}
\end{equation*}
$$

where $\sum:=\left\{\pi \in \mathcal{L}^{2},|\pi| \in\{0,1\}\right.$, a.e. and ess $\left.\sup _{\omega} \int_{0}^{T} \theta_{u}^{2}\left|\pi_{u}\right|^{2} d u<+\infty\right\}$
In this case, there exist $\bar{z} \in \mathcal{L}^{2}$ and $\bar{y}_{t}:=$ ess $\sup _{\pi \in \sum} \mathbb{E}\left(\Gamma_{t, T}^{\pi} \zeta \mid \mathcal{F}_{t}\right)$ such that (\bar{y}, \bar{z}) is the minimal solution of Equation (1.5). Furthermore, $\bar{y}_{t} \geq \mathbb{E}\left(\zeta \mid \mathcal{F}_{t}\right) \geq 0$, for each $t \in[0, T]$.

2 The $\operatorname{BSDE}\left(\xi, f(y)|z|^{2}\right)$

The $\operatorname{BSDE}\left(\xi, f(y)|z|^{2}\right)$ will be used in order to solve the general equation (ξ, H) with $|H(t, y, z)| \leq$ $\alpha_{t}|y|+\beta_{t}|y|+\theta_{t}|z|+f(|y|)|z|^{2}$. However, since $e q\left(\xi, f(y)|z|^{2}\right)$ is interesting itself and do not need the domination argument, we give in this subsection a complete study of this equation in the case where the function f is locally integrable but not necessary continuous. A characterization of the existence of solution is given for this equations. This is related to the function u_{f}, and for instance, when $u_{f}(\mathbb{R})=\mathbb{R}$ then the $\operatorname{BSDE}\left(\xi, f(y)|z|^{2}\right)$ has a solution for each terminal value ξ. No integrability is required to the terminal value ξ. We start this section by some examples which are covered by the present work and not covered by those of $[7,9,12,14,21,23,25,27,30]$.

2.1 Some examples of QBSDEs with non integrable terminal value

Example 2.1. Let f_{1} be a bounded function which is globally integrable on \mathbb{R}. We assume that f is bounded by 1 for simplicity. Clearly, the generator $H_{1}(y, z):=f_{1}(y)|z|^{2}$ satisfies $|H(y, z)| \leq|z|^{2}$. Hence, $H_{1}(y, z)$ is of quadratic growth. It was shown in [7, 9] that the QBSDE $\left(\xi, f_{1}(y)|z|^{2}\right)$ has a solution without any integrability condition on the terminal value ξ. Moreover, when ξ is square integrable then eq $\left(\xi, f_{1}(y)|z|^{2}\right)$ has a unique solution in $\mathcal{S}^{2} \times \mathcal{M}^{2}$.

Indeed, for a given locally integrable function f, the transformation u_{f} defined in (1.3) is a one to one function from \mathbb{R} onto \mathbb{R}. Both u_{f} and its inverse belong to the Sobolev space $W_{1, \text { loc }}^{2}$. Using Itô-Krylov's formula for BSDEs (see [7, 9]), it follows that $e q\left(\xi, f_{1}(y)|z|^{2}\right)$ has a solution if and only if $e q\left(u_{f_{1}}(\xi), 0\right)$ has a solution. Since f_{1} is globally integrable, then $u_{f_{1}}$ and its inverse are uniformly Lipschitz. It follows that $u_{f_{1}}(\xi)$ is square integrable if and only if ξ is square integrable. Therefore, $e q\left(\xi, f_{1}(y)|z|^{2}\right)$ has a unique solution in $\mathcal{S}^{2} \times \mathcal{M}^{2}$ whenever ξ is merely square integrable. This also shows that the convexity of the generator is not necessary to the uniqueness.
Example 2.2. The functions

$$
\begin{equation*}
f_{2}(y):=e^{y} \quad \text { and } \quad f_{3}(y):=\mathbb{1}_{\{y>0\}}+\mathbb{1}_{\{y \leq 0\}} e^{y} \tag{2.1}
\end{equation*}
$$

are not globally integrable on \mathbb{R}. However, the same argument shows that eq $\left(\xi, f_{i}(y)|z|^{2}\right)$ has a solution without any integrability of ξ, for $i \in\{2,3\}$. Note that f_{2} is neither globally integrable nor bounded.

2.2 Existence of $\operatorname{BSDE}\left(\xi, f(y)|z|^{2}\right)$ with f locally integrable

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a locally integrable function. The goal of this part is to explain how some $e q\left(\xi, f(y)|z|^{2}\right)$ has solutions without integrability of ξ and others need the integrability of ξ.

Consider the QBSDE

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s-\int_{t}^{T} Z_{s} d W_{s}, \quad 0 \leq t \leq T \tag{2.2}
\end{equation*}
$$

The function u_{f} defined by (1.3) belongs to the Sobolev space $W_{1, l o c}^{2}(\mathbb{R})$. Therefore, applying Itô-Krylov's formula to u_{f} (see $[7,9]$), one can show that (Y, Z) is a solution to equation (2.2) if and only if $(\bar{Y}, \bar{Z}):=\left(u_{f}(Y), u_{f}^{\prime}(Y) Z\right)$ is a solution to the BSDE

$$
\begin{equation*}
\bar{Y}_{t}=u_{f}(\xi)-\int_{t}^{T} \bar{Z}_{s} d W_{s}, \quad 0 \leq t \leq T \tag{2.3}
\end{equation*}
$$

According to Dudley's representation theorem, $e q\left(u_{f}(\xi), 0\right)$ has a solution for any $\mathcal{F}_{T^{-}}$ measurable random variable $u_{f}(\xi)$. No integrability is required to $u_{f}(\xi)$. But, our problem is to solve eq($\left.\xi, f(y)|z|^{2}\right)$. This is the subject of the following proposition.

Proposition 2.1. Let f be a locally integrable function and ξ a \mathcal{F}_{T}-measurable random variable.
(i) If $u_{f}(\mathbb{R})=\mathbb{R}$, then eq $\left(\xi, f(y)|z|^{2}\right)$ has a solution. No integrability is needed for ξ.
(ii) Let $u_{f}(\mathbb{R}) \neq \mathbb{R}$. If f is positive, $u_{f}(y)$ is then increasing and $\lim _{y \rightarrow \infty} u_{f}(y)=+\infty$. Assume that $\lim _{y \rightarrow-\infty} u_{f}(y)=c>-\infty$. Then, necessary $\bar{u}_{f}(\xi):=u_{f}(\xi)-c$ is integrable. In this case, eq $\left(\xi, f(y)|z|^{2}\right)$ has a solution given by $Y_{s}=\bar{u}_{f}^{-1}\left(\mathbb{E}\left[\bar{u}_{f}(\xi) / \mathcal{F}_{s}\right]\right)$. The case f negative goes similarly.

Proof Assertion (i) is simple. We prove assertion (ii). The function $\bar{u}_{f}(y):=u_{f}(y)-c$ belongs to the Sobolev space $W_{1, \text { loc }}^{2}(\mathbb{R})$ and it is one to one from \mathbb{R} into \mathbb{R}_{+}. Hence, ItôKrylov's formula applied to \bar{u}_{f} shows that (Y, Z) is a solution to equation (2.2) if and only if $(\bar{Y}, \bar{Z}):=\left(\bar{u}_{f}(Y), \bar{u}_{f}^{\prime}(Y) Z\right)$ is a solution to the BSDE

$$
\begin{equation*}
\bar{Y}_{t}=\bar{u}_{f}(\xi)-\int_{t}^{T} \bar{Z}_{s} d W_{s}, \quad 0 \leq t \leq T \tag{2.4}
\end{equation*}
$$

Since $\bar{Y}:=\bar{u}_{f}(Y)$ is positive, Therefore, $e q\left(\xi, f(y)|z|^{2}\right)$ has a solution if and only if $\bar{u}_{f}(\xi)$ is integrable. We then deduce that for any $s \leq T, \quad Y_{s}=\bar{u}_{f}^{-1}\left(\mathbb{E}\left[\bar{u}_{f}(\xi) / \mathcal{F}_{s}\right]\right)$.

2.3 Uniqueness and comparison for $e q\left(\xi, f(y)|z|^{2}\right.$) with f locally integrable

Proposition 2.2. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be locally integrable. Let u_{f} be the function defined in Lemma 5.1-I, v the function defined in Lemma 5.1-II and w the fonction defined in Lemma 5.1-III. Assume that $u_{f}(\xi)$ is integrable. Then, the $\operatorname{BSDE}\left(\xi, f(y)|z|^{2}\right)$ has a unique solution (Y, Z) such that $u_{f}(Y)$ belongs to class (D).
If moreover,
(i) $v(Y)$ belongs to class (D), then $\mathbb{E} \int_{0}^{T}\left|Z_{s}\right|^{2} d s<\infty$.
(ii) $w(Y)$ belongs to class (D), then $\mathbb{E} \int_{0}^{T}\left|f\left(Y_{s}\right)\right|\left|Z_{s}\right|^{2} d s<\infty$.

Proof The $\operatorname{BSDE}\left(\xi, f(y)|z|^{2}\right)$ has a solution if and only if the $\operatorname{BSDE}\left(u_{f}(\xi), 0\right)$ has a solution. But $e q\left(u_{f}(\xi), 0\right)$ has a solution by Dudley's representation theorem. This gives the existence
of solutions. We prove the uniqueness. Let Y^{1} and Y^{2} be two solutions of $e q\left(\xi, f(y)|z|^{2}\right)$ such that $u_{f}\left(Y^{1}\right)$ and $u_{f}\left(Y^{2}\right)$ belong to class (D). Arguing as in the proof of Proposition 1.1, we show that $u_{f}\left(Y^{1}\right)=u_{f}\left(Y^{2}\right)$ which implies that $Y^{1}=Y^{2}$ since u_{f} is one to one. Arguing again as in the proof of Proposition 1.1, we show that $\int_{0}^{T}\left|Z_{s}^{1}-Z_{s}^{2}\right|^{2} d s=0 \quad a . s$, since u_{f}^{\prime} is strictly positive.

We prove (i). Let v be the map defined in Lemma 5.1-II). For $N>0$, let $\tau_{N}:=\inf \{t>0$: $\left.\left|Y_{t}\right|+\int_{0}^{t}\left|v^{\prime}\left(Y_{s}\right)\right|^{2}\left|Z_{s}\right|^{2} d s \geq N\right\} \wedge T$. Set $\operatorname{sgn}(x)=1$ if $x \geq 0$ and $\operatorname{sgn}(x)=-1$ if $x<0$. Since the map $x \mapsto v(|x|)$ belongs to $W_{1, l o c}^{2}(\mathbb{R})$, then thanks to Itô-Krylov's formula for BSDEs (see $[7,9])$, we have for any $t \in[0, T]$,

$$
\begin{aligned}
v\left(\left|Y_{0}\right|\right)= & v\left(\left|Y_{t \wedge \tau_{N}}\right|\right)+\int_{0}^{t \wedge \tau_{N}}\left[\operatorname{sgn}\left(Y_{s}\right) v^{\prime}\left(\left|Y_{s}\right|\right) f\left(Y_{s}\right)\left|Z_{s}\right|^{2}-\frac{1}{2} v^{\prime \prime}\left(\left|Y_{s}\right|\right)\left|Z_{s}\right|^{2}\right] d s \\
& -\int_{0}^{t \wedge \tau_{N}} \operatorname{sgn}\left(Y_{s}\right) v^{\prime}\left(\left|Y_{s}\right|\right) Z_{s} d W_{s} .
\end{aligned}
$$

Lemma 5.1-II) allows us to deduce that for any $N>0$,

$$
\begin{align*}
\frac{1}{2} \mathbb{E} \int_{0}^{t \wedge \tau_{N}}\left|Z_{s}\right|^{2} d s & \leq \mathbb{E}\left[v\left(\left|Y_{t \wedge \tau_{N}}\right|\right)\right] \tag{2.5}\\
& \leq \sup _{\tau \leq T} \mathbb{E}\left[v\left(\left|Y_{\tau}\right|\right)\right] \tag{2.6}
\end{align*}
$$

where the supremum in the first right hand term, is taken over all stopping times $\tau \leq T$.
Since the process $\left[v\left(\left|Y_{t}\right|\right)\right]$ belongs to class (D), the proof is completed by using Fatou's lemma.

We prove (ii). Without loss, we assume that f is positive. Let w be the map defined in Lemma 5.1-III). For $N>0$, let $\tau_{N}:=\inf \left\{t>0:\left|Y_{t}\right|+\int_{0}^{t}\left|w^{\prime}\left(Y_{s}\right)\right|^{2}\left|Z_{s}\right|^{2} d s \geq N\right\} \wedge T$. Set $\operatorname{sgn}(x)=1$ if $x \geq 0$ and $\operatorname{sgn}(x)=-1$ if $x<0$. Since the map $x \mapsto w(|x|)$ belongs to $W_{1, l o c}^{2}(\mathbb{R})$, then thanks to Itô-Krylov's formula for BSDEs (see [7, 9]), we have for any $t \in[0, T]$,

$$
\begin{aligned}
w\left(\left|Y_{0}\right|\right)= & w\left(\left|Y_{t \wedge \tau_{N}}\right|\right)+\int_{0}^{t \wedge \tau_{N}}\left[\operatorname{sgn}\left(Y_{s}\right) w^{\prime}\left(\left|Y_{s}\right|\right) f\left(Y_{s}\right)\left|Z_{s}\right|^{2}-\frac{1}{2} w^{\prime \prime}\left(\left|Y_{s}\right|\right)\left|Z_{s}\right|^{2}\right] d s \\
& -\int_{0}^{t \wedge \tau_{N}} \operatorname{sgn}\left(Y_{s}\right) w^{\prime}\left(\left|Y_{s}\right|\right) Z_{s} d W_{s}
\end{aligned}
$$

Assumption (A1) and Lemma 5.1-III) allow us to show that for any $N>0$,

$$
\begin{equation*}
\frac{1}{2} \mathbb{E} \int_{0}^{t \wedge \tau_{N}} f\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s \leq \mathbb{E}\left[w\left(\left|Y_{t \wedge \tau_{N}}\right|\right)\right] \tag{2.7}
\end{equation*}
$$

where the supremum in the first right hand term, is taken over all stopping times $\tau \leq T$.
Since $w(Y)$ belongs to class (D), the proof is completed by sending N to ∞ and using Fatou's lemma. Proposition 2.2 is proved.

Remark 2.1. (i) Propositions 2.1 and 2.2 give the existence of solution in $\mathcal{C} \times \mathcal{L}^{2}$ with and without integrability of $u_{f}(\xi)$. If one wants to get more integrability of the solutions, then it is sufficient to impose more integrability on $u_{f}(\xi)$. For instance, when ξ is bounded then the solution (Y, Z) is such that Y is bounded and $\left(\int_{0}^{t} Z_{s} d W_{s}\right)_{0 \leq t \leq T}$ is a BMO martingale.
(ii) Note that, in contrast to [7, 9], the integrability of $u_{f}(\xi)$ is not equivalent to that of ξ.

Proposition 2.3. (Comparison) Let ξ_{1}, ξ_{2} be \mathcal{F}_{T}-measurable. Let f_{1}, f_{2} be elements of $\mathbb{L}_{\text {loc }}^{1}(\mathbb{R})$. Assume that $u_{f_{1}}\left({ }_{x} i_{1}\right)$ and $u_{f_{2}}\left(x_{x} i_{2}\right)$ are integrable. Let $\left(Y^{f_{1}}, Z^{f_{1}}\right),\left(Y^{f_{2}}, Z^{f_{2}}\right)$ be respectively the unique solution in class (D) of eq $\left(\xi_{1}, f_{1}(y)|z|^{2}\right)$ and eq $\left(\xi_{2}, f_{2}(y)|z|^{2}\right)$. Assume that $\xi_{1} \leq \xi_{2}$ a.s. and $f_{1} \leq f_{2}$ a.e. Then $Y_{t}^{f_{1}} \leq Y_{t}^{f_{2}}$ for all $t \mathbb{P}$-a.s.

Proof According to Proposition 2.2, the solutions $Y^{f_{1}}$ and $Y^{f_{2}}$ belong to class (D). Arguing as in the proof of Proposition 2.2, one can show that the processes $\left(\int_{0}^{t} u_{f_{1}}^{\prime}\left(Y_{s}^{f_{1}}\right) Z_{s}^{f_{1}} d W_{s}\right)_{0 \leq t \leq T}$ and $\left(\int_{0}^{t} u_{f_{2}}^{\prime}\left(Y_{s}^{f_{2}}\right) Z_{s}^{f_{2}} d W_{s}\right)_{0 \leq t \leq T}$ are uniformly integrable martingales. Using the Burkhölder-DavisGundy inequality and the fact that $f_{1} \leq f_{2}$, we show that the process $\left(\int_{0}^{t} u_{f_{1}}^{\prime}\left(Y_{s}^{f_{2}}\right) Z_{s}^{f_{2}} d W_{s}\right)_{0 \leq t \leq T}$ is a uniformly integrable martingale. The rest of the proof is performed as that Proposition 3.2. of [9].

$3 \quad \operatorname{BSDE}(\xi, H)$

To deal with more general BSDEs, we need the domination argument which will be present in the following subsection.

3.1 The domination argument

The domination argument implicitly appears in [7, 9] in a particular situation where the two dominating solutions belong to $\mathcal{S}^{2} \times \mathcal{M}^{2}$, the function f is globally integrable on \mathbb{R}, the three terminal values are square integrable, the two dominating coefficients H_{1}, H_{2} are of quadratic growth in z and of linear growth in y. Here, this argument is presented in a general framework, that is: the two dominating solutions lie in $\mathcal{C} \times \mathcal{L}^{2}$, the three involved terminal data ξ, ξ_{1} and ξ_{2} are not necessary integrable, the two dominating coefficients H_{1}, H_{2} are merely measurable and can have arbitrarily growth. Only $H(t, y, z)$ should be continuous on (y, z) and of at most quadratic growth in z.

Definition 3.1. (Domination conditions) We say that the data (ξ, H) satisfy a domination condition if there exist two $\left(\mathcal{F}_{t}\right)$ progressively measurable processes H_{1} and H_{2}, two $\left(\mathcal{F}_{T}\right)$ measurable random variables ξ_{1} and ξ_{2} such that:
(D1) $\quad \xi_{1} \leq \xi \leq \xi_{2}$
(D2) $e q\left(\xi_{1}, H_{1}\right)$ and $e q\left(\xi_{2}, H_{2}\right)$ have two solutions $\left(Y^{1}, Z^{1}\right)$ and $\left(Y^{2}, Z^{2}\right)$ such that:
(a) $Y^{1} \leq Y^{2}$,
(b) for every $(t, \omega), y \in\left[Y_{t}^{1}(\omega), Y_{t}^{2}(\omega)\right]$ and $z \in \mathbb{R}^{d}$,
(i) $H_{1}(t, y, z) \leq H(t, y, z) \leq H_{2}(t, y, z)$
(ii) $|H(t, \omega, y, z)| \leq \eta_{t}(\omega)+C_{t}(\omega)|z|^{2}$
where C and η are \mathcal{F}_{t}-adapted processes such that C is continuous and η satisfies for each ω, $\int_{0}^{T}\left|\eta_{s}(\omega)\right| d s<\infty$.

Lemma 3.1. (Existence by domination) Let H be continuous in (y, z) for a.e. (t, ω). Assume moreover that (ξ, H) satisfy the domination conditions (D1)-(D2). Then,
(i) The BSDE (ξ, H) has at least one solution (Y, Z) such that $Y^{1} \leq Y \leq Y^{2}$.
(ii) Among all solutions which lie between Y^{1} and Y^{2}, there exist a maximal and a minimal solution.

This lemma directly gives the existence of solutions. We do not need any a priori estimates nor approximation. The idea of the proof consists in deriving the existence of solutions for the BSDE without reflection from solutions of a suitable QBSDE with two reflecting barriers. To this end, we use the remarkable result of Essaky \& Hassani ([22], Theorem 3.2) which establishes the existence of solutions for reflected QBSDEs without assuming any integrability condition on the terminal value. For the self-contained, this result is stated in Theorem 5.1 in Appendix.

Proof of Lemma 3.1 Using Theorem 3.2 in [22] (see Theorem 5.1 in Apendix) with $L=Y^{H_{1}}$ and $U=Y^{H_{2}}$, there exists a process $\left(Y, Z, K^{+}, K^{-}\right)$such that (Y, Z) belongs to $\mathcal{C} \times \mathcal{L}^{2}$ and $\left(Y, Z, K^{+}, K^{-}\right)$satisfies the following reflected BSDE , for $t \in[0, T]$,

$$
\begin{cases}(i) & Y_{t}=\xi \\ & \quad \int_{t}^{T} H\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s} \\ & \quad+\int_{t}^{T} d K_{s}^{+}-\int_{t}^{T} d K_{s}^{-} \tag{3.1}\\ (i i) & \forall t \leq T, \quad Y_{t}^{H_{1}} \leq Y_{t} \leq Y_{t}^{H_{2}} \\ (i i i) & \int_{0}^{T}\left(Y_{t}-Y_{t}^{H_{1}}\right) d K_{t}^{+}=\int_{0}^{T}\left(Y_{t}^{H_{2}}-Y_{t}\right) d K_{t}^{-}=0, \text { a.s. } \\ (i v) & K_{0}^{+}=K_{0}^{-}=0, \quad K^{+}, K^{-} \text {are continuous nondecreasing, } \\ (v) & d K^{+} \perp d K^{-} .\end{cases}
$$

Moreover, equation (3.1) has a minimal solution and a maximal solution.
It remains to show that $d K^{+}=d K^{-}=0$. Since $Y_{t}^{H_{2}}$ is a solution to the $\operatorname{BSDE} e q\left(\xi_{2}, H_{2}\right)$, then Tanaka's formula applied to $\left(Y_{t}^{H_{2}}-Y_{t}\right)^{+}$shows that

$$
\begin{aligned}
\left(Y_{t}^{H_{2}}-Y_{t}\right)^{+} & =\left(Y_{0}^{H_{2}}-Y_{0}\right)^{+}+\int_{0}^{t} \mathbb{1}_{\left\{Y_{s}^{H_{2}}>Y_{s}\right\}}\left[H\left(s, Y_{s}, Z_{s}\right)-H_{2}\left(s, Y_{s}^{H_{2}}, Z_{s}^{H_{2}}\right)\right] d s \\
& +\int_{0}^{t} \mathbb{1}_{\left\{Y_{s}^{H_{2}}>Y_{s}\right\}}\left(d K_{s}^{+}-d K_{s}^{-}\right)+\int_{0}^{t} \mathbb{1}_{\left\{Y_{s}^{H_{2}}>Y_{s}\right\}}\left(Z_{s}^{H_{2}}-Z_{s}\right) d W_{s} \\
& +L_{t}^{0}\left(Y^{H_{2}}-Y\right)
\end{aligned}
$$

where $L_{t}^{0}\left(Y^{H_{2}}-Y\right)$ is the local time at time t and level 0 of the semimartingale $\left(Y^{H_{2}}-Y\right)$. Since $\left(Y_{t}^{H_{2}}-Y_{t}\right)^{+}=\left(Y_{t}^{H_{2}}-Y_{t}\right)$, then by identifying the terms of $\left(Y_{t}^{H_{2}}-Y_{t}\right)^{+}$with those of $\left(Y_{t}^{H_{2}}-Y_{t}\right)$ one can show that:

$$
\left(Z_{s}-Z_{s}^{H_{2}}\right) \mathbb{1}_{\left\{Y_{s}^{H_{2}}=Y_{s}\right\}}=0 \quad \text { for a.e. }(s, \omega)
$$

and
$\int_{0}^{t} \mathbb{1}_{\left\{Y_{s}^{H_{2}}=Y_{s}\right\}}\left(d K_{s}^{+}-d K_{s}^{-}\right)=L_{t}^{0}\left(Y^{H_{2}}-Y\right)+\int_{0}^{t} \mathbb{1}_{\left\{Y_{s}^{H_{2}}=Y_{s}\right\}}\left[H_{2}\left(s, Y_{s}^{H_{2}}, Z_{s}^{H_{2}}\right)-H\left(s, Y_{s}, Z_{s}\right)\right] d s$
Since $\int_{0}^{t} \mathbb{1}_{\left\{Y_{s}^{H_{2}}=Y_{s}\right\}} d K_{s}^{+}=0$, it holds that
$0 \leq L_{t}^{0}\left(Y^{H_{2}}-Y\right)+\int_{0}^{t} \mathbb{1}_{\left\{Y_{s}^{H_{2}}=Y_{s}\right\}}\left[H_{2}\left(s, Y_{s}^{H_{2}}, Z_{s}^{H_{2}}\right)-H\left(s, Y_{s}, Z_{s}\right)\right] d s=-\int_{0}^{t} \mathbb{1}_{\left\{Y_{s}^{H_{2}}=Y_{s}\right\}} d K_{s}^{-} \leq 0$
Hence, $\int_{0}^{t} \mathbb{1}_{\left\{Y_{s}^{H_{2}}=Y_{s}\right\}} d K_{s}^{-}=0$, which implies that $d K^{-}=0$. Similar arguments allow to show that $d K^{+}=0$. Therefore (Y, Z) is a solution to the (non reflected) BSDE $e q(\xi, H)$.

As byproducts of the domination lemma, we establish in this section the existence of solutions to $e q(\xi, H)$ first when (A1)-(A2) are satisfied and next when (A3)-(A4) hold. Some integrability properties of the solutions are also established under additional assumptions which will be specified below.

3.2 $\operatorname{BSDE}(\xi, H)$ with $|H(t, y, z)| \leq \alpha_{t}+\beta_{t}|y|+f(|y|)|z|^{2}$

The goal is to solve $e q(\xi, H)$. If one try to follow the proofs given in [12, 14], we should establish some a priori estimates of solutions then use a suitable approximation. This way is not efficient in our situation and in particular the exponential transformation can not be applied because f is not constant. Furthermore, in contrast to the domination argument, the method of [12, 14] can not be applied when the integrability of the terminal value is not a priori fixed. For the same reason, the argument developed in $[23,15,30]$ are also not effective in our situation. Note moreover that the methods used in $[12,14,23,15,30]$ can not allow to prove the existence of a maximal and a minimal solution. The method used in $[7,9]$ does not work in our situation since f is not globally integrable. The questions which then arise are : what condition we should impose to the terminal value ξ in order to get the existence of solution when f is not globally integrable? How do we proceed in this case? This is the subject of the next subsection. To prove the existence of solutions to $e q(\xi, H)$, our strategy consists in using Lemma 3.1 which allows to work without any a priori integrability condition on the terminal value ξ. Therefore, we start by assuming that only (A1) is satisfied. Let

$$
\begin{equation*}
g(t, y, z):=\alpha_{t}+\beta_{t}|y|+f(|y|)|z|^{2} \tag{3.2}
\end{equation*}
$$

According to Lemma 3.1, to establish the existence of solutions to $e q(\xi, H)$, it is enough to show that $e q\left(\xi^{+}, g\right)$ has a solution $\left(Y^{g}, Z^{g}\right)$ and $e q\left(-\xi^{-},-g\right)$ has a solution $\left(Y^{-g}, Z^{-g}\right)$ such that

$$
\begin{equation*}
Y^{-g} \leq Y^{g} . \tag{3.3}
\end{equation*}
$$

In $[7,9]$, the fact that ξ is assumed square integrable and f is globally integrable make simple the solvability of $e q\left(\xi^{+}, g\right)$ and $e q\left(-\xi^{-},-g\right)$ in $\mathcal{S}^{2} \times \mathcal{M}^{2}$ from which we easly deduce inequality (3.3). Question:
how to prove inequality (3.3) when we do not have any information on the integrability of ξ nor on the integrability of the solutions?

We emphasize that the comparison theorem does not work in this situation. But we need to prove inequality (3.3) in order to establish the existence of solutions to $e q(\xi, H)$. We proceed as follows : we assume that (A1) holds, we force Y^{-g} to be negative and Y^{g} to be positive then we deduce the integrability condition [namely (A2)] which we should impose to the terminal value ξ in order to get the existence of solution. Hence, assumption (A2) is generated by solving an inverse problem. Lemma 3.1 plays a key role in our proof. In particular, it allows us to reduce the solvability of $e q\left(\xi^{+}, g\right)$ to that of $e q\left(\xi_{\alpha, \beta}^{+}, 0\right)$ from which we derive assumption (A2).

3.2.1 The $\operatorname{BSDE}\left(\xi, \alpha_{t}+\beta_{t}|y|+f(|y|)|z|^{2}\right)$

The goal of this subsection is to show that the $\operatorname{BSDE}\left(\xi^{+}, g\right)$ has a positive solution and the $\operatorname{BSDE}\left(\xi^{-},-g\right)$ has a negative solution. The method used in $[7,9]$ to show this consists in reducing the solvability of these two BSDEs to the solvability of two BSDEs with linear growth. These computations do not work in our situation, since f is not globally integrable. The proof of following proposition shows how to get the existence of a positive to $e q\left(\xi^{+}, g\right)$ by using the domination argument when we do not have information on the integrability terminal value ξ.

It also allows the determine the integrability of we should impose to ξ by solving an inverse problem.

Proposition 3.1. Let ξ be an \mathcal{F}_{T}-measurable random variable. Let f be as in assumption (A1) and g be the function defined by (3.2).
(i) The BSDE $\left(\xi^{+}, g\right)$ has a positive solution if the $\operatorname{BSDE}\left(u_{f}\left(\xi_{\alpha, \beta}^{+}\right), 0\right)$ has a positive solution (Y, Z) such that $Y \geq u_{f}\left[e^{\int_{0}^{T} \beta_{s} d s}\left(\int_{0}^{T} \alpha_{s} d s\right)\right]$.
(ii) The BSDE $\left(-\xi^{-},-g\right)$ has a negative solution if the BSDE $\left(u_{f}\left(\xi_{\alpha, \beta}^{-}\right), 0\right)$ has a positive solution (Y, Z) such that $Y \geq u_{f}\left[e^{\int_{0}^{T} \beta_{s} d s}\left(\int_{0}^{T} \alpha_{s} d s\right)\right]$.
(iii) If moreover assumption (A2) is satisfied, then $e q\left(\xi^{+}, g\right)$ has a positive solution and $e q\left(\xi^{-},-g\right)$ has a negative solution.
Proof (i) For the simplicity of notations, we assume that α and β are constant. Note that (Y, Z) is a positive solution to $e q\left(\xi^{+}, g\right)$ if and only if (Y, Z) is a positive solution to the BSDE

$$
\begin{equation*}
Y_{t}=\xi^{+}+\int_{t}^{T} \alpha+\beta Y_{s}+f\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s-\int_{t}^{T} Z_{s} d W_{s} \tag{3.4}
\end{equation*}
$$

Therefore, it is enough to prove that: if $e q\left(u_{f}\left[e^{\beta T}\left(\xi^{+}+\alpha T\right)\right], 0\right)$ has a solution $\left(Y^{0}, Z^{0}\right)$ such that $Y^{0} \geq u_{f}\left(\alpha T e^{\beta T}\right)$ then equation (3.4) has a positive solution.

Return back to BSDE (3.4). By putting $\left(Y_{t}^{1}, Z_{t}^{1}\right):=\left(Y_{t}+\alpha t, Z_{t}\right)$, we see that equation (3.4) has a positive solution if and only if the BSDE

$$
\begin{equation*}
\left.Y_{t}^{1}=\xi^{+}+\alpha T+\int_{t}^{T} \beta\left(Y_{s}^{1}-\alpha s\right)+f\left(Y_{s}^{1}-\alpha s\right)\right)\left|Z_{s}^{1}\right|^{2} d s-\int_{t}^{T} Z_{s}^{1} d W_{s} \tag{3.5}
\end{equation*}
$$

has a solution $\left(Y^{1}, Z^{1}\right)$ such that for each t, $Y_{t}^{1} \geq \alpha t$.
Consider now the BSDE

$$
\begin{equation*}
Y_{t}=\alpha T-\int_{t}^{T} Z_{s} d W_{s} \tag{3.6}
\end{equation*}
$$

Clearly

- $(Y, Z)=(\alpha T, 0)$ is a solution to the BSDE (3.6),
- $0 \leq \xi^{+}+\alpha T \leq \xi^{+}+\alpha T$,
- for any $y \geq \alpha T, 0 \leq \beta(y-\alpha s)+f(y-\alpha s)|z|^{2} \leq \beta y+f(y)|z|^{2}$ since f is increasing.

Therefore, using Lemma 3.1 [with $\xi_{1}=0, \xi=\xi^{+}+\alpha T=\xi_{2}, H_{1}=0$ and $\left.H_{2}=\beta y+f(y)|z|^{2}\right]$, we show that equation (3.5) has a solution $\left(Y^{1}, Z^{1}\right)$ satisfying $Y^{1} \geq \alpha T$ if the BSDE

$$
\begin{equation*}
Y_{t}^{2}=\xi^{+}+\alpha T+\int_{t}^{T} \beta\left(Y_{s}^{2}\right)+f\left(Y_{s}^{2}\right)\left|Z_{s}^{2}\right|^{2} d s-\int_{t}^{T} Z_{s}^{2} d W_{s} \tag{3.7}
\end{equation*}
$$

has a solution $\left(Y^{2}, Z^{2}\right)$ satisfying $Y^{2} \geq \alpha T$.
But, Itô's formula shows that $\left(Y^{2}, Z^{2}\right)$ is a solution to equation (3.7) satisfying $Y^{2} \geq \alpha T$ if and only if the process $\left(Y_{t}^{3}, Z_{t}^{3}\right):=\left(Y_{t}^{2} e^{\beta t}, Z_{t}^{2} e^{\beta t}\right)$ is a solution to the BSDE

$$
\begin{equation*}
\left.Y_{t}^{3}=\left(\xi^{+}+\alpha T\right) e^{\beta T}+\int_{t}^{T} f\left(Y_{s}^{3} e^{-\beta s}\right)\right)\left|Z_{s}^{3}\right|^{2} e^{-\beta s} d s-\int_{t}^{T} Z_{s}^{3} d W_{s} \tag{3.8}
\end{equation*}
$$

satisfying $Y^{3} \geq \alpha T e^{\beta T}$.
Since f is increasing and continuous then, as previously, we use again Lemma 3.1 [with $\xi_{1}=$ $0, \xi=\left(\xi^{+}+\alpha T\right) e^{\beta T}=\xi_{2}, H_{1}=0$ and $\left.H_{2}=f(y)|z|^{2}\right]$, to show that equation (3.8) has a solution $\left(Y^{3}, Z^{3}\right)$ such that $Y^{3} \geq \alpha T e^{\beta T}$ if $e q\left(\left[\xi^{+}+\alpha T\right] e^{\beta T}, f(y)|z|^{2}\right)$ has a solution $\left(Y^{4}, Z^{4}\right)$ satisfying $Y^{4} \geq \alpha T e^{\beta T}$. Applying Itô's formula to $u_{f}\left(Y_{t}^{4}\right)$, we show that $e q\left(\left[\xi^{+}+\alpha T\right] e^{\beta T}, f(y)|z|^{2}\right)$ has a solution $\left(Y^{4}, Z^{4}\right)$ such that $Y^{4} \geq \alpha T e^{\beta T}$ if and only if eq($\left.\left.u_{f}\left[\xi^{+}+\alpha T\right] e^{\beta T}\right), 0\right)$ has a solution $\left(Y^{5}, Z^{5}\right)$ satisfying $Y^{5} \geq u_{f}\left(\alpha T e^{\beta T}\right)$. According to Proposition 1.1, the latter is equivalent to the fact that $u_{f}\left[e^{\beta T}\left(\xi^{+}+\alpha T\right)\right]$ is integrable. Assertion (i) is proved.

Assertion (ii) can be proved similarly, since (Y, Z) is a negative solution to $e q\left(-\xi^{-},-g\right)$ if and only if $\left(Y^{\prime}, Z^{\prime}\right):=(-Y,-Z)$ is a positive solution to the BSDE

$$
\begin{equation*}
Y_{t}^{\prime}=\xi^{-} \int_{t}^{T} \alpha+\beta Y_{s}^{\prime}+f\left(Y_{s}^{\prime}\right) Z_{s}^{2} d s-\int_{t}^{T} Z_{s}^{\prime} d W_{s} \tag{3.9}
\end{equation*}
$$

Proposition 3.1 is proved.

3.2.2 The $\operatorname{BSDE}(\xi, H)$ with $|H(t, y, z)| \leq \alpha+\beta|y|+f(|y|)|z|^{2}$

The following theorem is deduced from Proposition 3.1 and Lemma 3.1. It covers the previous results established in $[12,14,15,23,25]$ and many others situations which are not covered by the previous works on QBSDE. For instance, we cover the cases: $H(y, z)=y|z|$ and also $H(y, z)=\alpha_{t}+\beta_{t}|y|+g(|y|)|z|^{p}+f(|y|)|z|^{2}$ with $0<p<2$ and f, g continuous, increasing and positive on \mathbb{R}_{+}.
Theorem 3.1. (i) Assume that H and ξ satisfy (A1)-(A2). Then, $e q(\xi, H)$ has at least one solution (Y, Z) which satisfies for any t,

$$
\begin{equation*}
-u_{f}^{-1}\left(\mathbb{E}\left[u_{f}\left(\xi_{\alpha, \beta}^{-}\right) / \mathcal{F}_{t}\right]\right) \leq Y_{t} \leq u_{f}^{-1}\left(\mathbb{E}\left[u_{f}\left(\xi_{\alpha, \beta}^{+}\right) / \mathcal{F}_{t}\right]\right) . \tag{3.10}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
\mathbb{E}\left[u_{f}\left(\xi_{\alpha, \beta}^{-}\right)\right] \leq \mathbb{E}\left[u_{f}\left(Y_{t}\right)\right] \leq \mathbb{E}\left[u_{f}\left(\xi_{\alpha, \beta}^{+}\right)\right] . \tag{3.11}
\end{equation*}
$$

(ii) Among all solutions satisfying (3.10), there are a maximal and a minimal solution. Note also that, among all solutions satisfying $Y^{-g} \leq Y \leq Y^{g}$, there also exists a maximal and a minimal solution.

The following remark will be used later. It can be proved as Theorem 3.1.
Remark 3.1. Under the assumptions of Theorem 3.1, it also holds that

$$
\begin{equation*}
-u_{f}^{-1}\left(\mathbb{E}\left[u_{f}\left(\xi_{\alpha, \beta}^{-}\right) / \mathcal{F}_{t}\right]\right) \leq\left(Y_{t}+\int_{0}^{t} \alpha_{s} d s\right) e^{\int_{0}^{t} \beta_{s} d s} \leq u_{f}^{-1}\left(\mathbb{E}\left[u_{f}\left(\xi_{\alpha, \beta}^{+}\right) / \mathcal{F}_{t}\right]\right) \tag{3.12}
\end{equation*}
$$

And in particular

$$
\begin{equation*}
\mathbb{E}\left[u_{f}\left(\xi_{\alpha, \beta}^{-}\right)\right] \leq \mathbb{E}\left(u_{f}\left[\left(Y_{t}+\int_{0}^{t} \alpha_{s} d s\right) e^{\int_{0}^{t} \beta_{s} d s}\right]\right) \leq \mathbb{E}\left[u_{f}\left(\xi_{\alpha, \beta}^{+}\right)\right] \tag{3.13}
\end{equation*}
$$

Corollary 3.1. Theorem 3.1 remains valid when the function f is continuous but not necessary increasing. In this case, assumption (A2) should be slightly modified as follows:
(A2bis)

$$
\mathbb{E}\left[u_{h}\left(\xi_{\alpha, \beta}\right)\right]<\infty \quad \text { where } h(y):=\sup _{0 \leq x \leq y} f(x)
$$

Proof Since the function h is increasing and continuous, the result follows.

Remark 3.2. Note that when f is merely locally bounded but not necessary continuous, then Theorem 3.1 remains valid with the following condition in place of assumption (A2).
(A2ter) $\mathbb{E}\left[u_{\varphi}\left(\xi_{\alpha, \beta}\right)\right]<\infty$, where φ is the smallest continuous, increasing function such that $\varphi \geq f$.

Proposition 3.2. (Integrability property of solutions) (i) Let the assumptions of Theorem 3.1 be satisfied. Assume moreover that there exists $p>1$ such that

$$
\begin{equation*}
\mathbb{E}\left[\left(u_{f}\left[\xi_{\alpha, \beta}\right]\right)^{p}\right]<\infty \tag{3.14}
\end{equation*}
$$

then the $B S D E(\xi, H)$ has a solution (Y, Z) which satisfies

$$
\begin{equation*}
\mathbb{E}\left(\sup _{0 \leq t \leq T}\left[u_{f}\left(\left[\left|Y_{t}\right|+\int_{0}^{t} \alpha_{s} d s\right] e^{\int_{0}^{t} \beta_{s} d s}\right)\right]^{p}\right) \leq \mathbb{E}\left(\left[u_{f}\left(\xi_{\alpha, \beta}\right)\right]^{p}\right) \tag{3.15}
\end{equation*}
$$

(ii) If moreover, $v(|Y|)$ belongs to class (D) and $\sup _{0 \leq s \leq T} \mathbb{E}\left[\left|Y_{s}\right| v^{\prime}\left(\left|Y_{s}\right|\right)\right]<\infty$ then, the $\operatorname{BSDE}(\xi, H)$ has a solution (Y, Z) which satisfies

$$
\begin{equation*}
\mathbb{E} \int_{0}^{T}\left|Z_{s}\right|^{2} d s<\infty \tag{3.16}
\end{equation*}
$$

here v is the function defined in Lemma 5.1-II).
Remark 3.3. (i) Let v be the function defined in Lemma 5.1-II). Since for y large enough, $v^{\prime}(|y|) \leq\left[u^{\prime}(|y|)\right]^{p},|y| v^{\prime}(|y|) \leq\left[u^{\prime}(|y|)\right]^{p}$ and we know by Theorem 3.1 that

$$
\left|Y_{t}\right| \leq u_{f}^{-1}\left(\mathbb{E}\left[u_{f}\left(\xi_{\alpha, \beta}\right) / \mathcal{F}_{t}\right]\right)
$$

then the conditions $v(|Y|)$ belongs to class (D) and $\sup _{0 \leq s \leq T} \mathbb{E}\left[\left|Y_{s}\right| v^{\prime}\left(\left|Y_{s}\right|\right)\right]<\infty$ are satisfied when

$$
\begin{equation*}
\sup _{0 \leq t \leq T} \mathbb{E}\left\{\left(\alpha_{t}+\beta_{t}\right)\left(u_{f}^{\prime}\left[u_{f}^{-1}\left(\mathbb{E}\left[u_{f}\left(\xi_{\alpha, \beta}\right) / \mathcal{F}_{t}\right]\right)\right]\right)^{p}\right\}<\infty \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left(\left[\sup _{t \leq T}\left(u_{f}^{\prime}\left[u_{f}^{-1}\left(\mathbb{E}\left[u_{f}\left(\xi_{\alpha, \beta}\right) / \mathcal{F}_{t}\right]\right)\right]\right)\right]^{p}\right)<\infty \tag{3.18}
\end{equation*}
$$

(ii) Conditions (3.17) and (3.18), which seem be complicated, cover those used in previous works. For instance, when α_{t}, β_{t} and f are constant with $f(y)=\frac{\gamma}{2}$ (see [14]), one can take $u_{f}(y)=\exp (\gamma y)$. And in this case, conditions (3.17) and (3.18) become $\mathbb{E}\left[e^{p \gamma\left(\xi_{\alpha, \beta}\right)}\right]<\infty$ for some $p>1$, which is the condition imposed in [14].

Proof of Theorem 3.1. The existence of (a maximal and a minimal) solutions follows from Proposition 3.1 and Lemma 3.1. Indeed, the two solutions we constructed in Proposition 3.1 satisfy $Y^{-g} \leq Y^{g}$. We then use Lemma 3.1 with $\xi_{1}=-\xi^{-}, \xi_{2}=\xi^{+}, H_{1}=-g$ and $H_{2}=g$ to get the existence of solutions. We shall prove estimate (3.10). For simplicity, we assume that α and β are constant. Since $u_{f}\left[e^{\beta T}\left(\xi^{+}+\alpha T\right)\right]$ is integrable, then the solution we constructed in the proof of assertion (i) of Proposition 3.1 satisfies for any t,

$$
u_{f}\left(\left[Y^{g}+\alpha t\right] e^{\beta t}\right) \leq \mathbb{E}\left(u_{f}\left[e^{\beta T}\left(\xi^{+}+\alpha T\right)\right] / \mathcal{F}_{t}\right)
$$

This shows the first inequality of (3.10). A similar argument allows us to prove the second inequality. Theorem 3.1 is proved.

Proof of Proposition 3.2. Assertion (i). Note that the solution $\left(Y^{5}, Z^{5}\right)$ we constructed in the proof of Proposition 3.1 satisfies the BSDE

$$
\begin{equation*}
Y_{t}^{5}=u_{f}\left[e^{\beta T}\left(\xi^{+}+\alpha T\right)\right]-\int_{t}^{T} Z_{s}^{5} d W_{s} \tag{3.19}
\end{equation*}
$$

Since there exists $p>1$ such that inequality (3.14) holds, then equation (3.19) has a unique solution $\left(Y^{5}, Z^{5}\right)$ such that (details can be found in $\left.[4,5]\right)$:

$$
\begin{equation*}
\mathbb{E}\left(\sup _{0 \leq t \leq T}\left[Y_{t}^{5}\right]^{p}\right) \leq \mathbb{E}\left(\left[u_{f}\left(e^{\beta T}[|\xi|+\alpha T]\right)\right]^{p}\right) \tag{3.20}
\end{equation*}
$$

But, since $u_{f}\left[e^{\beta t}\left(Y_{t}^{g}+\alpha_{t}\right)\right] \leq Y^{5}$, we then have, $\mathbb{E}\left(\sup _{0 \leq t \leq T}\left[u_{f}\left(\left[Y_{t}^{g}+\int_{0}^{t} \alpha_{s} d s\right] e^{\int_{0}^{t} \beta_{s} d s}\right)\right]^{p}\right) \leq$ $\mathbb{E}\left(\left[u_{f}\left(e^{\beta T}[|\xi|+\alpha T]\right)\right]^{p}\right)$.
Similarly, we get $\mathbb{E}\left(\sup _{0 \leq t \leq T}\left[u_{f}\left(\left[\left(-Y_{t}^{g}\right)+\int_{0}^{t} \alpha_{s} d s\right] e^{\int_{0}^{t} \beta_{s} d s}\right)\right]^{p}\right) \leq \mathbb{E}\left(\left[u_{f}\left(e^{\beta T}[|\xi|+\alpha T]\right)\right]^{p}\right)$. Assertion (i) is proved.

We shall prove assertion (ii). Let v be the function defined in Lemma 5.1-II). For $N>0$, let $\tau_{N}:=\inf \left\{t>0:\left|Y_{t}\right|+\int_{0}^{t}\left|v^{\prime}\left(Y_{s}\right)\right|^{2}\left|Z_{s}\right|^{2} d s \geq N\right\} \wedge T$. Set $\operatorname{sgn}(x)=1$ if $x \geq 0$ and $\operatorname{sgn}(x)=-1$ if $x<0$. Since the map $x \mapsto v(|x|)$ belongs to $\mathcal{C}^{2}(\mathbb{R})$, then thanks to Itô's formula, we have for any $t \in[0, T]$

$$
\begin{aligned}
v\left(\left|Y_{0}\right|\right)= & v\left(\left|Y_{t \wedge \tau_{N}}\right|\right)+\int_{0}^{t \wedge \tau_{N}}\left[\operatorname{sgn}\left(Y_{s}\right) v^{\prime}\left(\left|Y_{s}\right|\right) H\left(s, Y_{s}, Z_{s}\right)-\frac{1}{2} v^{\prime \prime}\left(\left|Y_{s}\right|\right)\left|Z_{s}\right|^{2}\right] d s \\
& -\int_{0}^{t \wedge \tau_{N}} \operatorname{sgn}\left(Y_{s}\right) v^{\prime}\left(\left|Y_{s}\right|\right) Z_{s} d W_{s}
\end{aligned}
$$

Assumption (A1) and Lemma 5.1-II) allow us to show that for any $N>0$,

$$
\begin{equation*}
\frac{1}{2} \mathbb{E} \int_{0}^{t \wedge \tau_{N}}\left|Z_{s}\right|^{2} d s \leq \mathbb{E}\left[v\left(\left|Y_{t \wedge \tau_{N}}\right|\right)\right]+\mathbb{E} \int_{0}^{T}\left[\alpha_{t} v^{\prime}\left(\left|Y_{s}\right|\right)+\beta_{t}\left|Y_{s}\right| v^{\prime}\left(\left|Y_{s}\right|\right)\right] d s \tag{3.21}
\end{equation*}
$$

Since the processes $v(|Y|)$ and $|Y| v^{\prime}(|Y|)$ belong to class (D), the proof is completed by using Fatou's lemma. Proposition 3.2 is proved.

Corollary 3.2. (BMO property) (i) Let (A1) be satisfied. Assume moreover that ξ, $\int_{0}^{T} \alpha_{s} d s$ and $\int_{0}^{T} \beta_{s} d s$ are bounded. Then, every solution (Y, Z) satisfying inequalities (3.10) is such that Y is bounded and the process $\left(\int_{0}^{t} Z_{s} d W_{s}\right)_{0 \leq t \leq T}$ is a BMO martingale.

Proof (i) Let (Y, Z) be a solution to $e q(\xi, H)$ such that Y satisfies inequalities (3.10). Since $\xi, \int_{0}^{T} \alpha_{s} d s$ and $\int_{0}^{T} \beta_{s} d s$ are bounded, then clearly Y is bounded. Arguing as in the proof of Proposition 3.2 (ii), one can show that Z belongs to \mathcal{M}^{2}. We shall prove that the process $\left(\int_{0}^{t} Z_{s} d W_{s}\right)_{0 \leq t \leq T}$ is a BMO martingale. Let v be the function defined in Lemma 5.1-II). Since the map $x \longmapsto v(|x|)$ belongs to $\mathcal{C}^{2}(\mathbb{R})$, then Itô's formula shows that for any \mathcal{F}_{t}-stopping time $\tau \leq T$,

$$
\begin{aligned}
v\left(\left|Y_{T}\right|\right)= & v\left(\left|Y_{\tau}\right|\right)+\int_{\tau}^{T}\left[\frac{1}{2} v^{\prime \prime}\left(\left|Y_{s}\right|\right)\left|Z_{s}\right|^{2}-\operatorname{sgn}\left(Y_{s}\right) v^{\prime}\left(\left|Y_{s}\right|\right) H\left(s, Y_{s}, Z_{s}\right)\right] d s \\
& +\int_{\tau}^{T} \operatorname{sgn}\left(Y_{s}\right) v^{\prime}\left(\left|Y_{s}\right|\right) Z_{s} d W_{s}
\end{aligned}
$$

Since Y is bounded and Z belongs to \mathcal{M}^{2}, it follows that the stochastic integral in the right hand side term of the previous equality is a square integrable \mathcal{F}_{t}-martingale. Passing to conditional expectation, one can show that there exist positive constants K_{1} and K_{2} such that

$$
\mathbb{E}\left(\int_{\tau}^{T}\left|Z_{s}\right|^{2} d s / \mathcal{F}_{\tau}\right) \leq K_{1}+\mathbb{E}\left(\int_{\tau}^{T}\left[\left(\alpha_{s}+\beta_{s}\left|Y_{s}\right|\right) v^{\prime}\left(\left|Y_{s}\right|\right)\right] d s / \mathcal{F}_{\tau}\right)
$$

We complete the proof by noticing that the processes $Y, \int_{0}^{T} \alpha_{s} d s$ and $\int_{0}^{T} \beta_{s} d s$ are bounded. Assertions (ii) and (iii) can be proved similarly.

Remark 3.4. Let $|H(t, y, z)| \leq \alpha_{t}+\beta_{t}|y|+f(y)|z|^{2}$, with f continuous, positive and increasing but not globally integrable. Then, the condition which ensures the existence of solution is:

$$
\begin{equation*}
\mathbb{E}\left(u_{f}\left(\xi_{\alpha, \beta}^{+}\right)\right)<\infty \quad \text { and } \quad \mathbb{E}\left(\exp \left[\left(\xi^{-}\right) e^{\int_{0}^{T} \beta_{s} d s} 2 f(0)\right]\right)<\infty \tag{3.22}
\end{equation*}
$$

Proof We assume that α and β are constants for simplicity. As previously, thanks to the domination argument, $e q(\xi, H)$ has a solution if $e q\left(\xi^{+}, \alpha+\beta|y|+f(y)|z|^{2}\right)$ has a positive solution and $e q\left(-\xi^{-},-\left[\alpha+\beta|y|+f(y)|z|^{2}\right]\right)$ has a negative solution. The first inequality in (3.22) can be proved as in Proposition 3.1. To prove the second inequality of (3.22), we see that (Y, Z) is a negative solution to $e q\left(-\xi^{-},-\left[\alpha+\beta|y|+f(y)|z|^{2}\right]\right)$ if $\left(Y^{\prime}, Z^{\prime}\right):=(-Y,-Z)$ is a positive solution to the BSDE

$$
Y_{t}^{\prime}=\xi^{-}+\int_{t}^{T}\left[\alpha+\beta Y_{s}^{\prime}+f\left(-Y_{s}^{\prime}\right)\left|Z_{s}^{\prime}\right|^{2}\right] d s-\int_{t}^{T} Z_{s}^{\prime} d W_{s}
$$

Since f is increasing, we use the domination argument to show that the previous BSDE has a positive solution if the $\operatorname{BSDE} Y_{t}^{1}=\xi^{-}+\int_{t}^{T}\left[\alpha+\beta Y_{s}^{1}+2 f(0)\left|Z_{s}^{1}\right|^{2}\right] d s-\int_{t}^{T} Z_{s}^{1} d W_{s}$ has a positive solution. The sequel of the proof goes as in Theorem 3.1.

3.2.3 $\operatorname{BSDE}(\xi, H)$ with $|H(t, y, z)| \leq \alpha_{t}+\beta_{t}|y|+\theta_{t}|z|+f(|y|)|z|^{2}$

As in the previous subsection, we use the domination argument (Lemma 3.1) to reduce the solvability of $e q(\xi, H)$ to the positive solvability $(Y \geq 0)$ of the simple BSDEs $\left(u_{f}\left(\xi_{\alpha, \beta}^{+}\right), \theta_{t}|z|\right)$ and $\left(u_{f}\left(\xi_{\alpha, \beta}^{-}\right), \theta_{t}|z|\right)$ then apply Proposition 1.2 to conlude.

Proposition 3.3. Assume that (A3), (A4) are satisfied. Then,
(i) eq($(, H)$ has at least one solution such that

$$
\begin{equation*}
u_{f}^{-1}\left(\text { ess } \sup _{\pi \in \sum} \mathbb{E}\left(\Gamma_{t, T}^{\pi} u_{f}\left(\xi_{\alpha, \beta}^{-}\right) \mid \mathcal{F}_{t}\right)\right) \leq Y_{t} \leq u_{f}^{-1}\left(\operatorname{ess} \sup _{\pi \in \sum} \mathbb{E}\left(\Gamma_{t, T}^{\pi} u_{f}\left(\xi_{\alpha, \beta}^{+}\right) \mid \mathcal{F}_{t}\right)\right) \tag{3.23}
\end{equation*}
$$

(ii) Among all solutions satisfying inequalities (3.23) there are a maximal and a minimal solution.
(iii) Assume moreover that $\exp \left(\int_{0}^{T} \theta_{s}^{2} d s\right)$ is integrable, and $\xi_{\alpha, \beta}$ is bounded. Then all solutions satisfying inequalities (3.23) are bounded.

Remark 3.5. One may wonder what is the usefulness of assumption (A3) since it can be reduced to assumption (A1) by the operation $\left.\alpha_{t}+\beta_{t}|y|+\theta_{t}|z|+f(|y|)|z|^{2}\right) \leq \alpha_{t}+\frac{1}{2} \theta^{2}+\beta_{t}|y|+$ $\left.\left[\frac{1}{2}+f(|y|)\right]|z|^{2}\right)$. It should be noted that in this case the integrability requested to the terminal value will be higher.

Proof of Proposition 3.3. Since H satisfies (A3), then according to the domination argument, it is enough to show that $e q\left(\xi^{+}, \alpha_{t}+\beta_{t}|y|+\theta_{t}|z|+f(|y|)|z|^{2}\right)$ has a positive solution. Arguing as in the proof of Theorem 3.1, one can show that $e q\left(\xi^{+}, \alpha_{t}+\beta_{t}|y|+\theta_{t}|z|+f(|y|)|z|^{2}\right)$ has a positive solution if $e q\left(u_{f}\left(\xi_{\alpha, \beta}^{+}\right), \theta_{t}|z|\right)$ has a solution which is greater than $u_{f}\left(\alpha T e^{\beta T}\right)$. This implies, thanks to Proposition 1.2, that assumption (A4) is satisfied. Proposition 3.3 is proved.

Remark 3.6. (i) Taking $f=0$ in Proposition 3.23, we get the existence of one dimensional BSDEs with a stochastic linear growth. This covers the results of [26] and [24].
(ii) We emphasize that Proposition 1.5 combined with the domination argument allows to directly prove the existence of solutions to BSDEs whose generators satisfy

$$
\begin{equation*}
|H(t, y, z)| \leq \alpha_{t}+\beta_{t}|y|+\theta_{t}|z| \tag{3.24}
\end{equation*}
$$

and ξ satisfies assumption (A3) with $f=0$.
This constitute a new result on the existence of solutions to BSDEs with at most linear growth which for instance covers the recent result [24], with a simpler proof.

Remark 3.7. Since the transformation u_{f} does not impact Z, we then have
If $|H(t, y, z)| \leq \alpha_{t}+\beta_{t}|y|+\theta_{t}|z|+f(|y|)|z|^{2}$ with α, β, f satisfy (A3) and $\mathbb{E} \int_{0}^{T} e^{q \gamma_{s}} d s<\infty$ for some $q>0$, then arguing as in Proposition 3.3 and using [4, 5], one can show that eq (ξ, H) has a solution (Y, Z) in $\mathcal{S}^{p} \times \mathcal{M}^{p}$ provided that $\exp \left(\frac{1}{2} \int_{0}^{T} \gamma_{s} e^{\beta_{s}} d s\right) u_{f}\left(\xi_{\alpha, \beta}\right)$ is p-integrable for some $p>1$.

Corollary 3.3. (BMO property) (i) Let (A3) be satisfied. Assume moreover that $\xi, \int_{0}^{T} \alpha_{s} d s$, $\int_{0}^{T} \beta_{s} d s$ and $\int_{0}^{T} \gamma_{s}^{2} d s$ are bounded. Then, every solution (Y, Z) satisfying inequalities (3.23) is such that Y is bounded and the process $\left(\int_{0}^{t} Z_{s} d W_{s}\right)_{0 \leq t \leq T}$ is a BMO martingale.
(ii) When H is dominated by $\alpha_{t}+\theta_{t}|z|+f(|y|)|z|^{2}$ with ξ, $\int_{0}^{T} \alpha_{s} d s$ and $\int_{0}^{T} \gamma_{s}^{2} d s$ bounded, then we have the same conclusion as (i) with f locally integrable and increasing but not continuous.
(iii) When H is dominated by $\theta_{t}|z|+f(|y|)|z|^{2}$ with ξ, $\int_{0}^{T} \alpha_{s} d s$ and $\int_{0}^{T} \gamma_{s}^{2} d s$ bounded, then we have the same conclusion as (i) with f merely locally integrable but neither increasing nor continuous.

4 Quadratic BSDEs and BSDEs with logarithmic nonlinearity

The aim of this subsection is to study the $\operatorname{BSDE}(\xi, H)$ with H continuous and with lLoglgrowth. That is : there exist positive constants a, b and c such that for every t, y, z

$$
\begin{equation*}
|H(t, y, z) \leq a+b| y|+c| y||\ln | y| \mid \tag{4.1}
\end{equation*}
$$

Using the domination argument (Lemma 3.1), we show that that of $e q(\xi, H)$ is equivalent to the solvability of $e q\left(\xi, \alpha+\beta|y|+\frac{\gamma}{2}|z|^{2}\right)$, for suitable α, β and γ. According to Theorem 3.1, the $\operatorname{BSDE}\left(\xi, \alpha+\beta|y|+\frac{\gamma}{2}|z|^{2}\right)$ has a solution when $\exp \left(\gamma e^{\alpha T}|\xi|\right)$ is integrable, and we have the following propositions.

Proposition 4.1. The BSDE $\left(\xi, \alpha+\beta|y|+\frac{\gamma}{2}|z|^{2}\right)$ has a solution if and only if the BSDE $\left(e^{\gamma \xi}, \gamma \alpha y+\gamma \beta y|\ln y|\right)$ has a solution.

Proof Let

$$
\begin{equation*}
g(t, y, z):=\alpha+\beta|y|+\frac{\gamma}{2}|z|^{2} . \tag{4.2}
\end{equation*}
$$

Applying Itô's formula to $u(y):=e^{\gamma y}$, we show that $\left(Y_{t}, Z_{t}\right)$ is a solution to $e q(\xi, g)$ if and only if $\left(\bar{Y}_{t}, \bar{Z}_{t}\right):=\left(e^{\gamma Y_{t}}, \gamma e^{\gamma Y_{t}} Z_{t}\right)$ is a solution to $e q\left(e^{\gamma \xi}, \gamma \alpha y+\gamma \beta y|\ln y|\right)$. Indeed: Let (Y, Z) be a solution of $e q(\xi, g)$. By Itô's formula we have,

$$
\begin{aligned}
e^{\gamma Y_{t}} & =e^{\gamma Y_{T}}+\int_{t}^{T} \gamma e^{\gamma Y_{s}} g\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} \gamma e^{\gamma Y_{s}} Z_{s} d W_{s}-\frac{\gamma^{2}}{2} \int_{t}^{T} e^{\gamma Y_{s}}\left|Z_{s}\right|^{2} d s \\
& =e^{\gamma \xi}+\int_{t}^{T} \gamma e^{\gamma Y_{s}}\left(\alpha+\beta\left|Y_{s}\right|+\frac{\gamma}{2}\left|Z_{s}\right|^{2}\right) d s-\int_{t}^{T} \gamma e^{\gamma Y_{s}} Z_{s} d W_{s}-\frac{\gamma^{2}}{2} \int_{t}^{T} e^{\gamma Y_{s}}\left|Z_{s}\right|^{2} d s \\
& =e^{\gamma \xi}+\int_{t}^{T} \gamma e^{\gamma Y_{s}}\left(\alpha+\beta\left|Y_{s}\right|\right) d s-\int_{t}^{T} \gamma e^{\gamma Y_{s}} Z_{s} d W_{s}
\end{aligned}
$$

It is clear that $\bar{Y}>0$ and (\bar{Y}, \bar{Z}) satisfies the BSDE

$$
\bar{Y}_{t}=e^{\gamma \xi}+\int_{t}^{T} \gamma\left(\alpha \bar{Y}_{s}+\beta \bar{Y}_{s}\left|\ln \bar{Y}_{s}\right|\right) d s-\int_{t}^{T} \bar{Z}_{s} d W_{s} .
$$

Proposition 4.1 is proved.
Proposition 4.2. Let ξ be an \mathcal{F}_{T}-measurable random variable. Let G be defined by

$$
\begin{equation*}
G(y):=a+b|y|+c|y||\ln | y| | \tag{4.3}
\end{equation*}
$$

(i) If eq $\left(e^{(a+b+2 c) e^{c T}}\left(\xi^{+}+1\right)^{e^{c T}}\right.$, 0) has a positive solution, then eq $\left(\xi^{+}, G\right)$ has a positive solution.
(ii) (Y, Z) is a negative solution of eq $\left(-\xi^{-},-G\right)$ if and only if $(-Y,-Z)$ is a positive solution to eq $\left(\xi^{-}, G\right)$. Therefore, if eq $\left(e^{(a+b+2 c) e^{c T}}\left(\xi^{-}+1\right)^{e^{c T}}, 0\right)$ has a positive solution, then $e q\left(-\xi^{-},-G\right)$ has a negative solution.
(iii) If $|\xi|{ }^{e^{c T}}$ is integrable, then eq $\left(\xi^{+}, G\right)$ has a positive solution and eq $\left(-\xi^{-},-G\right)$ has a negative solution, and therefore eq (ξ, H) has at least one solution (Y, Z) which belongs to $\mathcal{S}^{e^{c T}} \times \mathcal{M}^{2}$. Moreover, according to see [8], the uniqueness holds in $\mathcal{S}^{e^{2 c T}+1} \times \mathcal{M}^{2}$ provided that $|\xi|^{2 c T}+1$ is integrable.

Proof Let $G(y):=a+b|y|+c|y||\ln | y| |$. Let Y^{G} be a positive solution to eq($\left.\xi^{+}, G\right)$. This is equivalent to say that Y^{G} is a positive solution to the $\operatorname{BSDE}(a+b y+c y|\ln y|)$. Applying Itô's formula to the function $u\left(Y_{t}^{G}\right):=\ln \left(Y_{t}^{G}+1\right)$, we obtain

$$
\begin{align*}
u\left(Y_{t}^{G}\right)=\ln \left(\xi^{+}+1\right) & +\int_{t}^{T}\left(\left[a+b Y_{s}^{G}+c Y_{s}^{G}\left|\ln \left(Y_{s}^{G}\right)\right|\right] \frac{1}{1+Y_{s}^{G}}+\frac{1}{2} \frac{\left|Z_{s}^{G}\right|^{2}}{\left(1+Y_{s}^{G}\right)^{2}}\right) d s \\
& -\int_{t}^{T} \frac{1}{1+Y_{s}^{G}} Z_{s}^{G} d W_{s} \tag{4.4}
\end{align*}
$$

The process $(\bar{Y}, \bar{Z}):=\left(\ln \left(1+Y^{G}\right), \frac{Z^{G}}{1+Y^{G}}\right)$ satisfies the BSDE

$$
\begin{equation*}
\bar{Y}_{t}=\ln \left(\xi^{+}+1\right)+\int_{t}^{T} \bar{H}\left(s, \bar{Y}_{s}, \bar{Z}_{s}\right) d s-\int_{t}^{T} \bar{Z}_{s} d W_{s} \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{H}(t, y, z):=\left[a+b\left(e^{y}-1\right)+c\left(e^{y}-1\right)\left|\ln \left(e^{y}-1\right)\right|\right] \frac{1}{e^{y}}+\frac{1}{2}|z|^{2} . \tag{4.6}
\end{equation*}
$$

Since the function $x|\ln (x)|<1$ for each x in $[0,1]$ and strictly increasing in $[1,+\infty)$, we then have $(x|\ln (x)|) \frac{1}{1+x} \leq 1+|\ln (x+1)|$. Hence

$$
\begin{equation*}
(a+b x+c x|\ln (x)|) \frac{1}{1+x} \leq a+b+c+c|\ln (x+1)| \tag{4.7}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
0 \leq \bar{H}(t, y, z) \leq a+b+c+c y+\frac{1}{2}|z|^{2} \tag{4.8}
\end{equation*}
$$

According to Lemma 3.1, it is enough to show that $e q\left(\ln \left(\xi^{+}+1\right), a+b+c+c y+\frac{1}{2}|z|^{2}\right)$ has a positive solution. But from Proposition 3.1, eq(ln($\left.\left.\xi^{+}+1\right), a+b+c+c y+\frac{1}{2}|z|^{2}\right)$ has a positive solution when $e q\left(e^{(a+b+2 c) e^{c T}} e^{e^{c T} \ln \left(\xi^{+}+1\right)}, 0\right)$ has a positive solution, which is equivalent to say that $e q\left(e^{(a+b+2 c) e^{c T}}\left(\xi^{+}+1\right)^{e^{c T}}, 0\right)$ has a positive solution. This implies that $\left(\xi^{+}+1\right)^{e^{c T}}$ is integrable. Assertions (ii) can be proved as assertion (i). Lemma 3.1 allows to establish existence of solutions of assertion (iii).

Remark 4.1. (Uniqueness). According to assertion (iii) of Proposition 4.2, eq $(\xi, a+b|y|+$ $c|y||\ln | y|\mid)$ has a unique solution (Y, Z) which belongs to $\mathcal{S}^{e^{2 c T}+1} \times \mathcal{M}^{2}$ provided that $|\xi|^{e^{2 c T}+1}$ is integrable. Therefore, eq $\left(\xi, \alpha+\beta|y|+\frac{\gamma}{2}|z|^{2}\right)$ has a unique solution provided that $\exp \left(\gamma \xi\left(e^{2 \beta T}+1\right)\right)$ is integrable. We moreover have, $\sup _{0 \leq s \leq T} \exp \left(\gamma\left|Y_{s}\right|\left(e^{2 \beta_{s}}+1\right)\right)$ is integrable. This gives a simple proof to the uniqueness of eq $\left(\xi, \alpha+\beta|y|+\frac{\gamma}{2}|z|^{2}\right)$ without using the convexity (in z) of the generator.

5 Appendix.

We recall the result of Essaky \& Hassani ([22]) on the two barriers reflecting QBSDEs. It establishes the existence of solutions for reflected QBSDEs without assuming any integrability condition on the terminal datum. This result is used in the proof of the domination argument.

Theorem 5.1. ([22], Theorem 3.2) Let L and U be continuous processes and ξ be a $\mathcal{F}_{T^{-}}$ measurable random variable. Assume that

1) for every $t \in[0, T], \quad L_{t} \leq U_{t}$
2) $L_{T} \leq \xi \leq U_{T}$.
3) there exists a continuous semimartingale which passes between the barriers L and U.
4) The generator h is continuous in (y, z) and satisfies for every (s, ω), every $y \in\left[L_{s}(\omega), U_{s}(\omega)\right]$ and every $z \in \mathbb{R}^{d}$.

$$
|h(s, \omega, y, z)| \leq \eta_{s}(\omega)+C_{s}(\omega)|z|^{2}
$$

where η and C are two \mathcal{F}_{t}-adapted processes such that $\mathbb{E} \int_{0}^{T} \eta_{s} d s<\infty$ and C is continuous.

Then, the following RBSDE has a maximal and a minimal solution.

$$
\begin{cases}\text { (i) } & Y_{t}=\xi+\int_{t}^{T} h\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s} \\ & +\int_{t}^{T} d K_{s}^{+}-\int_{t}^{T} d K_{s}^{-} \text {for all } t \leq T \\ (\text { ii }) & \forall t \leq T, L_{t} \leq Y_{t} \leq U_{t} \tag{5.1}\\ (\text { iii }) & \int_{0}^{T}\left(Y_{s}-L_{s}\right) d K_{s}^{+}=\int_{0}^{T}\left(U_{s}-Y_{s}\right) d K_{s}^{-}=0, \text { a.s. } \\ \text { (iv }) & K_{0}^{+}=K_{0}^{-}=0, \quad K^{+}, K^{-} \text {are continuous nondecreasing. } \\ (v) & d K^{+} \perp d K^{-}\end{cases}
$$

The following lemma is used in order to eliminate the quadratic term from $e q\left(\xi, f(y)|z|^{2}\right)$ and $e q\left(\xi, \alpha_{t}+\beta_{t}|y|+\theta_{t}|z|+f(|y|)|z|^{2}\right)$.
Lemma 5.1. I) Let $f \in \mathbb{L}_{l o c}^{1}(\mathbb{R})$ but not necessarily continuous. Then the function

$$
\begin{equation*}
u_{f}(x):=\int_{0}^{x} \exp \left(2 \int_{0}^{z} f(r) d r\right) d z \tag{5.2}
\end{equation*}
$$

satisfies the differential equation $\frac{1}{2} u_{f}^{\prime \prime}(x)-f(x) u_{f}^{\prime}(x)=0$ a.e on \mathbb{R}, and has the following properties:
(j) u_{f} is a one to one function. Both u and its inverse u_{f}^{-1} are locally Lipschitz, that is for every $R>0$ there exist two positive constants m_{R} and M_{R} such that, for any $|x|,|y| \leq R$,

$$
m_{R}|x-y| \leq\left|u_{f}(x)-u_{f}(y)\right| \leq M_{R}|x-y|
$$

(jj) Both u_{f} and its inverse function u_{f}^{-1} belong to $W_{1, l o c}^{2}(\mathbb{R})$. If moreover f is continuous, then both u_{f} and u_{f}^{-1} belong to $\mathcal{C}^{2}(\mathbb{R})$.
II) Set

$$
K(y):=\int_{0}^{y} \exp \left(-2 \int_{0}^{z} f(r) d r\right) d z
$$

Then, the function

$$
\begin{equation*}
v(x):=\int_{0}^{x} K(y) \exp \left(2 \int_{0}^{y} f(r) d r\right) d y \tag{5.3}
\end{equation*}
$$

satisfies the differential equation $\frac{1}{2} v^{\prime \prime}(x)-f(x) v^{\prime}(x)=\frac{1}{2}$ a.e. on \mathbb{R} and has the following properties:
$(j j j) v$ and v^{\prime} are positive on \mathbb{R}_{+}and v belongs to $W_{1, \text { loc }}^{2}(\mathbb{R})$.
($j v$) The map $x \longmapsto v(|x|)$ belongs to $W_{1, \text { loc }}^{2}(\mathbb{R})$, and belongs to $\mathcal{C}^{2}(\mathbb{R})$ if f is continuous.
III) Set $G(z):=\int_{0}^{z} f(x) e^{-2 \int_{0}^{x} f(r) d r} d x$. The function

$$
\begin{equation*}
w(y):=\int_{0}^{y} G(z) e^{2 \int_{0}^{x} f(r) d r} d z \tag{5.4}
\end{equation*}
$$

has the following properties :
(vj) the map $x \longmapsto w(|x|)$ belongs to $W_{1, \text { loc }}^{2}$
(vjj) w satisfies the following differential equation

$$
\begin{equation*}
\frac{1}{2} w^{\prime \prime}(x)-f(x) w^{\prime}(x)=\frac{1}{2} f(x) \quad \text { a.e. on } \mathbb{R} \tag{5.5}
\end{equation*}
$$

Proof I) Clearly, u_{f} and its inverse u_{f}^{-1} are continuous, one to one, strictly increasing functions and we have $\frac{1}{2} u_{f}^{\prime \prime}(x)-f(x) u_{f}^{\prime}(x)=0$ a.e. on \mathbb{R}. Since $u_{f}^{\prime}(x):=\exp \left(2 \int_{0}^{x} f(t) d t\right)$, then,

$$
\begin{equation*}
\text { for every }|x| \leq R, \quad \exp \left(-2\|f\|_{\mathbb{L}^{1}([-R, R])}\right) \leq\left|u_{f}^{\prime}(x)\right| \leq \exp \left(2\|f\|_{\mathbb{L}^{1}([-R, R])}\right) . \tag{5.6}
\end{equation*}
$$

This shows that u_{f} and u_{f}^{-1} are locally Lipschitz.
We prove $(j j)$. Using inequality (5.6), one can show that both u_{f} and u_{f}^{-1} belong to \mathcal{C}^{1}. Since the second generalized derivative $u_{f}^{\prime \prime}$ satisfies $u_{f}^{\prime \prime}(x)=2 f(x) u_{f}^{\prime}(x)$ for a.e. x, we get that $u_{f}^{\prime \prime}$ belongs to $\mathbb{L}_{l o c}^{1}(\mathbb{R})$. Therefore u_{f} belongs to $W_{1, l o c}^{2}(\mathbb{R})$. Using again assertion (j), we prove that u_{f}^{-1} belongs to $W_{1, l o c}^{2}(\mathbb{R})$.
II) Obviously v and v^{\prime} are positive on \mathbb{R}_{+}and v satisfies the differential equation $\frac{1}{2} v^{\prime \prime}(x)-$ $f(x) v^{\prime}(x)=\frac{1}{2}$ a.e. on \mathbb{R}. Since f is locally integrable on \mathbb{R}, one can easily check that v belongs to $W_{1, \text { loc }}^{2}(\mathbb{R})$. This proves assertions $(j j j)$, from which we deduce assertion $(j v)$. The proof of III) is similar.

Acknowledgment. It is my pleasure to thank El-Hassan Essaky and especially Mohammed Hassani for various discussions on BSDEs.

This work has been presented at Conference on Stochastic control, BSDEs and new developments (September 2017 at Roscoff, France), International Conference on Stochastic Analysis (October 2017 at Hammamet, Tunisia), Journées Analyse Stochastique (January 2018, Biskra, Algeria), Conference SMT (March 2018, Tabarka, Tunisia), and Séminaire Bachelier (January 2018, IHP, Paris, France), Séminaire de l'université du Mans (February 2018, Le Mans, France), Viennese Seminar on Probability Theory and Mathematical Finance (Vienna, July 2018) and Workshop on Probability (September 2018, Marrakech, Maroc). The author is sincerely grateful to the organizers of these events for their invitation.

References

[1] Ankirchner, S.; Imkeller, P.; Popier, A.; On measure solutions of backward stochastic differential equations. Stochastic Process. Appl. 119 (2009), no. 9, 2744-2772.
[2] Bahlali, K. (1999) Flows of homeomorphisms of stochastic differential equations with measurable drift. Stoch. Stoch. Rep. 67, no. 1-2 53-82.
[3] K. Bahlali, E.H. Essaky, M. Hassani, E. Pardoux, Existence, uniqueness and stability of backward stochastic differential equations with locally monotone coefficient. C. R. Acad. Sci., Paris 335, no. 9, 757-762, (2002).
[4] K. Bahlali, E.H. Essaky, M. Hassani, Multidimensional BSDEs with superlinear growth coefficient. Application to degenerate systems of semilinear PDEs. Comptes Rendus Mathematique 348, Issues 11-12, 677-682, (2010).
[5] K. Bahlali, E. Essaky, M. Hassani; Existence and uniqueness of multidimensional BSDEs and of systems of degenerate PDEs with superlinear growth generator. SIAM J. Math. Anal. 47 (2015), no. 6, 4251-4288.
[6] Bahlali, K.; Hamadène, S.; Mezerdi, B. Backward stochastic differential equations with two reflecting barriers and application, SPA Stoch. Processes. Appl., 115, 1107-1129, (2005).
[7] Bahlali, Khaled; Eddahbi, M'hamed; Ouknine, Youssef; Solvability of some quadratic BSDEs without exponential moments. C. R. Math. Acad. Sci. Paris 351 (2013), no. 5-6, 229-233.
[8] Bahlali, K.; BSDEs with continuous generator. Sublinear growth and logarithmic growth. http://www.cmap.polytechnique.fr/ ecole-cimpa-tlemcen-2014/files/bahlali2.pdf, pp. 1220.
[9] Khaled Bahlali, M'hamed Eddahbi, Youssef Ouknine; Quadratic BSDEs with \mathbb{L}^{2}-terminal data Krylov's estimate and Itô-Krylov's formula and Existence results. The Annals of Probability 2017, Vol. 45, No. 4, 2377-2397. DOI/ 10.1214/16-AOP1115.
[10] K. Bahlali, O. Kebiri, N. Khelfallah, H. Moussaoui; BSDEs with logarithmic growth, applications to PDEs. Stochastics 89 (2017), no. 6-7, 1061-1081.
http://www.tandfonline.com/doi/full/10.1080/17442508.2017.1311900
[11] Khaled Bahlali, Ludovic Tangpi; BSDEs driven by $|z|^{2} / y$ and applications. Preprint (2018), arXiv:1810.05664.
[12] Barrieu, P.; El Karoui, N. Monotone stability of quadratic semimartingales with applications to unbounded general quadratic BSDEs to appear in the Annals of Probability.
[13] Bismut, J.M. Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44 (1973), 384-404.
[14] Briand, P.; Hu, Y. BSDE with quadratic growth and unbounded terminal value. Probab. Theory Related Fields, 136, (2006), 4, 604-618.
[15] Delbaen, F.; Hu, Y.; Richou, A. (2011) On the uniqueness of solutions to quadratic BSDEs with convex generators and unbounded terminal conditions. Ann. Inst. Henri Poincaré Probab. Stat., 47(2), 559-574.
[16] Delyon, B.; The solution to BSDEs with terminal condition in \mathbb{L}^{1}. 3rd Coll. on BSDEs Finance and Appl., Weihai, 2002. Preprint. https://perso.univrennes1.fr/bernard.delyon/papers.html
[17] Dermoune, A.; Hamadène, S.; Ouknine, Y. Backward stochastic differential equation with local time. Stoch. Stoch. Rep. 66 , (1999), 1-2, 103-119.
[18] Dudley, R. M. Wiener functionals as Itô integrals, Ann. Probab. 5, no. 1, 140-141, (1979).
[19] D. Duffie and L. G. Epstein. Stochastic differential utility. Econometrica, 60(2), 353-394, (1992).
[20] Durïng, B.; Jüngel, A. (2005) Existence and uniqueness of solutions to a quasilinear parabolic equation with quadratic gradients in financial markets. Nonl. Anal. TMA 62, no. 3, 519-544.
[21] Essaky, E.; Hassani, M. General existence results for reflected BSDE and BSDE. Bull. Sci. Math. 135, (2011), 5, 442-446.
[22] Essaky, E.; Hassani, M. Generalized BSDE with 2-reflecting Barriers and Stochastic Quadratic Growth. J. Differential Equations 254, (2013), no. 3, 1500-1528.
[23] Frei, Christoph; dos Reis, Gonçalo Quadratic FBSDE with generalized Burgers' type nonlinearities, perturbations and large deviations. Stoch. Dyn. 13 (2013), no. 2, 1250015, 37 pp.
[24] Ying Hu, Shanjian Tang; Existence of solution to scalar BSDEs with weakly L1+-integrable terminal values. arXiv:1704.05212.
[25] Kobylanski, M. Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28, no. 2, 558-602, (2000).
[26] Lepeltier, J. P.; San Martin, J. Backward stochastic differential equations with continuous coefficient, Statist. Probab. Lett., 32, no. 4, 425-430, (1997).
[27] Lepeltier, J.P.; San Martin, J. Existence for BSDE with Superlinear-Quadratic coefficients. Stoch. Stoch. Rep. 63, 227-240 (1998)
[28] Pardoux, E.; Peng, S. Adapted solution of a backward stochastic differential equation. System Control Lett. 14, 55-61, (1990).
[29] D. Revuz, M. Yor, Continuous martingales and brownian motion Springer, 3rd Edition 1999, Corrected 3rd printing 2005.
[30] Tevzadze, R. Solvability of Backward Stochastic Differential Equations with Quadratic Growth. Stochastic processes and their Applications 118 503-515. (2008).

[^0]: *Partially supported by PHC Toubkal/18/59.

