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QUADRATIC TRANSPORTATION INEQUALITIES FOR SDES WITH

MEASURABLE DRIFT

KHALED BAHLALI, SOUFIANE MOUCHTABIH, AND LUDOVIC TANGPI

Abstract. Let X be the solution of the multidimensional stochastic differential equation

dX(t) = b(t, X(t)) dt + σ(t, X(t)) dW (t) X(0) = x ∈ R
d

where W is a standard Brownian motion. In our main result we show that when b is measurable
and σ is in an appropriate Sobolev space, the law of X satisfies a uniform quadratic transportation
inequality.

1. Introduction and main results

Throughout this work, we fix d ∈ N and T a strictly positive real number. Let (Ω,F , P ) be
the canonical space of a d-dimensional Brownian motion denoted by W and equipped with the P -
completion of the raw filtration σ(Ws, s ≤ t) generated by W . That is Ω = C([0, T ],Rd) endowed
with the supremum norm, and Wt(ω) = ω(t). Further denote by P(Ω) the set of all Borel probability
measures on Ω. For µ, ν ∈ P(Ω) define the (second order) Wassertein distance and the Kullback-
Leibler divergence respectively by

W2(µ, ν) :=
(

inf
π

∫

Ω×Ω

‖ω − η‖2∞ π(dω, η)
)1/2

and H(ν|µ) :=

∫

dν

dµ
log

dν

dµ
dµ

where the infimum is taken over all, probability measures π on the product with first marginal µ
and second marginal ν, and we used the convention dν/dµ = +∞ if ν is not absolutely continuous
w.r.t. µ. Given a constant C, a probability measure µ is said to satisfy Talagrand’s T2(C) inequality
(or quadratic transportation inequality) if

W2(µ, ν) ≤
√

CH(ν|µ) for all ν ∈ P(Ω).

This inequality was popularized in probability theory by the works of Talagrand [25] and Marton [18]
on the concentration of measure phenomenon. It has since found numerous applications, for instance
to isoperimetric problems, to randomized algorithms [9], or to quantitative finance [26, 15] and to
various problems of probability in high dimensions [7, 19, 16]. We refer the reader e.g. to Ledoux
[17] for an overview, notably for the connection to the concentration of measures. Transportation
inequalities are also related to various other functional inequalities as Poincaré inequality, log-Sobolev
inequality, inf-convolution and hypercontractivity, see [4], [20].

Our objective is to investigate transportation inequalities for stochastic differential equations of
the form

(1) X(t) = x+

∫ t

0

b(s,X(s)) ds+

∫ t

0

σ(s,X(s)) dW (s) for t ∈ [0, T ], x ∈ R
d.

under minimal regularity assumptions on the coefficients b : [0, T ]× R
d → R

d and σ : [0, T ]× R
d →

R
d×d. To state our main result, let us recall the following functional spaces. For p ≥ 1 denote by

Lp
loc([0, T ]) := Lp

loc([0, T ]× R
d) the (Lebesgue) space of classes of locally integrable functions and for
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every m1,m2 ∈ N, let Wm1,m2
p ([0, T ]) := Wm1,m2

p ([0, T ] × R
d) be the usual Sobolev space of weakly

differentiable functions f : [0, T ]× R
d → R such that

‖f‖Wm1,m2
p

:=
∑

|α|≤m1

‖∂αt f‖Lp +
∑

|α|≤m2

‖∂αx f‖Lp <∞

where α is a multiindex. Denote by Wm1,m2

p,loc ([0, T ]) the space of weakly differentiable functions

f : [0, T ]× R
d → R such that

‖f‖Lp

loc
+

∑

|α|≤m1

‖∂αt f‖Lp

loc
+

∑

|α|≤m2

‖∂αx f‖Lp

loc
<∞.

Further let Lp
q([0, T ]) := Lq([0, T ], Lp(Rd)) be the space of (classes of) measurable functions f :

[0, T ]× R
d → R

d such that

‖f‖Lq
p
:=

(

∫ T

0

(

∫

Rd

|f(s, x)|p dx
)q/p

ds
)1/q

<∞.

The aim of this note is to prove the following:

Theorem 1. Assume that one of the following sets of assumptions is satisfied:

(A) σ, b ∈ L∞([0, T ]×R
d), the function σ is continuous in (t, x) and belongs to W 0,1

2(d+1),loc([0, T ]),

there is λ > 0 such that

(2) ξ∗σ(t, x)ξ ≥ λ|ξ|2 for all (t, x, ξ) ∈ [0, T ]× R
d × R

d, where ∗ denotes the transpose,

and T is small enough.

(B) σ ∈ W 0,1
2(d+1),loc([0, T ]) ∩ L

∞([0, T ]× R
d), σ is uniformly continuous in x and there is λ > 0

such that σ satisfies (2). The function b satisfies b ∈ Lp
q([0, T ]) for some p, q such that

d/p+ 2/q < 1, 2(d+ 1) ≤ p and q > 2.

Then, Equation (1) admits a unique strong solution X with continuous paths and

the law µx of X satisfies T2(C)

for some constant C depending on the data, namely ‖b‖Lq
p
, ‖σ‖∞, T, x, d, p and q.

Since b is only assumed to be measurable, this result gives transportation inequality for singular
SDEs as dX(t) = sgn(X(t)) dt+ dW (t), or for ”regime switching” models as

dX(t) =
{

b1(t,X(t))1A(X(t)) + b2(t,X(t))1Ac(X(t)
}

dt+ σ(t,X(t)) dW (t)

with A a measurable subset of Rd. Other examples are discussed at the end of the article.
Regarding the related literature, Talagrand [25] proved a quadratic transportation inequality for

the multidimensional Gaussian distribution with optimal constant C = 2. Using stochastic analysis
techniques, notably Girsanov’s theorem, Talagrand’s work was then extended to Wiener measure on
the path space by Feyel and Üstünel [11]. The case of SDEs was first analyzed by Djellout et al. [8]
using a technique based on Girsanov’s transform that we also employ here. Their results gave rise
to an interesting literature, including the papers [21, 27] on SDEs driven by Brownian motion and
[23, 24] on SDEs driven by abstract Gaussian noise. Note that all the aforementioned works on SDEs
assume that the coefficients are Lipschitz-continuous or satisfy a dissipative condition.

The effort to extend results from [8] to diffusions with non-smooth coefficients was started by Bartl
and Tangpi [3] where it is proved that T2(C) holds for one-dimensional equations, if b is measurable in
space and differentiable in time and σ Lipschitz continuous. The idea of [3] is based on a transformation
that is tailor-made for the one-dimensional case. The present note deals with the multidimensional
case and further weakens the regularity requirements imposed in [3]. In this case we use Zvonkin’s
transformation, (a technique well-known in SDE theory) along with gradient estimates for singular,
second order parabolic PDEs. Note that considering multidimensional equations is, for instance,
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fundamental for applications to concentration and asymptotic results on interacting particle systems,
see e.g. [7, Section 5] and the various examples we give in the final section.

The proof of Theorem 1 is given in the next section, and the final section presents some examples.

2. Transportation inequalities

2.1. Equation with Sobolev coefficients. The goal of this section is to prove a quadratic trans-
portation inequality for SDE (1) when the coefficients belong to some Sobolev spaces. Along with
gradient estimates for solutions of singular PDEs, this will be an essential building block for the proof
of the main result.

Proposition 2. Let σ ∈W 0,1
2(d+1),loc([0, T ])∩L

∞([0, T ]×R
d) and b ∈W 0,1

(d+1),loc([0, T ])∩L
∞([0, T ]×

R
d). Assume that there exists λ > 0 such that σ satisfies (2). Then, equation (1) admits a unique

strong solution X, and

the law µx of X satisfies T2(C)

with C = inf
0<ε<1

2 exp
(

6
C2

BDG + ε

ε(1− ε)
T
) 1

1− ε
‖σ‖2∞ where CBDG is the universal constant appearing in

Burkholder-Davis-Gundy inequality.

The proof of this proposition follows a coupling argument introduced in [8]. The main challenge
here being the lack of regularity of the coefficients σ and b. We start by a Lemma whose proof can
be found in Step 1 of the proof of [8, Theorem 5.6].

Lemma 3. Let ν ∈ P(Ω) be such that ν ≪ µx and H(ν|µx) < ∞, and let X be the solution of (1).
Then, the probability measure ν given by

Q :=
dν

dµx
(X)P

satisfies

(3) H(ν|µx) = EQ

[1

2

∫ T

0

|q(s)|2 ds
]

for some progressively measurable, square integrable process q such that W̃ := W −
∫ ·

0 q(s) ds is a
Q-Brownian motion.

Proof of Proposition 2. That (1) admits a unique strong solution follows from e.g. [1, Theorem 2.1].
Let ν ∈ P(Ω) be absolutely continuous with respect to µ. We can assume without loss of generality
that H(ν|µx) < ∞. Let Q and q be as in Lemma 3. Under the probability measure Q, the SDE (1)
takes the form

(4) dX(t) = σ(t,X(t))dW̃ (t) +
{

σ(t,X(t))q(t) + b(t,X(t))
}

dt, with X(0) = x

and the law of X under Q is ν. Furthermore, the SDE

dY (t) = σ(t, Y (t))dW̃ (t) + b(t, Y (t)) dt, with Y (0) = x

admits a unique solution whose law under Q is µx. That is, (X,Y ) under Q is a coupling of (ν, µx).
Thus,

(5) W2
2 (ν, µx) ≤ EQ

[

sup
0≤t≤T

|X(t)− Y (t)|2
]

.
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We now estimate the right hand side above. By Itô’s formula, we have

|X(t)− Y (t)|2 =

∫ t

0

2(X(s)− Y (s))σ(s,X(s))q(s) + |σ(s,X(s))− σ(s, Y (s))|2 ds

+

∫ t

0

2(X(s)− Y (s))(b(s,X(s))− b(s, Y (s))) ds

+

∫ t

0

2(X(s)− Y (s))(σ(s,X(s)) − σ(s, Y (s))) dW̃,(6)

where we simply denote by ab the inner product between two vectors a and b. The difficulty is to
deal with the terms σ(s,X(s))−σ(s, Y (s)) and b(s,X(s))− b(s, Y (s)). To that end, we introduce the
following random times: First consider the sequence of stopping times

τN := inf{t > 0 : |X(t)| > N or |Y (t)| > N} ∧ T.

It is clear that τN ↑ T . For each λ in [0, 1] and t in [0, T ], we put Zλ
t := λX(t) + (1 − λ)Y (t). For

every N ≥ 0 and t ∈ [0,∞), define

AN (t) :=

∫ t∧τN

0

∫ 1

0

(|∂xσ(s, Z
λ
s )|

2 + |∂xb(s, Z
λ
s )|)dλds,

where the (weak) derivative acts on the spacial variable. The process kN (t) := t+AN (t) is continuous,
strictly increasing and kN (0) = 0. Moreover, kN maps [0,∞) onto itself. We denote by γN the unique
inverse map of kN . Using (6), Cauchy-Schwarz and Burkholder-Davis-Gundy inequalities, one can
show that for each t ∈ [0,∞) it holds that

EQ

[

sup
s∈[0,γN

t ∧τN ]

|X(s)− Y (s)|2
]

≤ EQ

[

∫ γN
t ∧τN

0

|X(s)− Y (s)|2 ds+ ‖σ‖2∞

∫ γN
t ∧τN

0

|q(s)|2ds
]

+ EQ

[

∫ γN
t ∧τN

0

|σ(s,X(s))− σ(s, Y (s))|2 + 2(X(s)− Y (s))(b(s,X(s))− b(s, Y (s))) ds
]

+ 2CBDGEQ

[(

∫ γN
t ∧τN

0

|X(s)− Y (s)|2|σ(s,X(s))− σ(s, Y (s))|2 ds
)1/2]

:= I1 + I2 + I3,(7)

for a (universal) constant CBDG > 0.
Let ε > 0. By Young’s inequality, we have

I3 ≤ εEQ

[

sup
s∈[0,γN

t ∧τN ]

|X(s)− Y (s)|2
]

+
2C2

BDG

ε
I2.

We shall estimate I2. We denote by KN the ball {x ∈ R
d, |x| ≤ N}. For K := [0, T ] × KN . Let

bn, σn ∈ C∞ be such that,

‖σn − σ‖W 0,1
2(d+1)

(K) → 0 and ‖bn − b‖W 0,1
d+1(K) → 0.

Using Krylov’s estimate ([14, Theorem 2.2.4]), we get

I2 ≤ CT,N,d ‖σ − σn‖L2(d+1)(K) + CT,N,d (‖b− bn‖L(d+1)(K))

+ 2EQ

[

∫ γN
t ∧τN

0

|X(s)− Y (s)|2
∫ 1

0

(|∂xσn(s, Z
λ
s )|

2 + |∂xbn(s, Z
λ
s )|)dλds

]
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where CT,N,d is a positive constant which depends on T,N and d. Taking the limit as n goes to
infinity in the last inequality and using the fact that dAN (s) ≤ dkN (s), we obtain

I2 ≤ 2EQ

[

∫ γN
t ∧τN

0

|X(s)− Y (s)|2 dkN (s)
]

.

Therefore,

I3 ≤ εEQ

[

sup
s∈[0,γN

t ∧τN ]

|X(s)− Y (s)|2
]

+
6C2

BDG

ε
EQ

[

∫ γN
t ∧τN

0

|X(s)− Y (s)|2 dkN (s)
]

.

Coming back to (7), since kN (t) := t+AN (t), we have

EQ

[

sup
s∈[0,γN

t ∧τN ]

|X(s)− Y (s)|2
]

≤ 4EQ

[

∫ γN
t ∧τN

0

|X(s)− Y (s)|2 dkN (s) + ‖σ‖2∞

∫ γN
t ∧τN

0

|q(s)|2ds
]

+ εEQ

[

sup
s∈[0,γN

t ∧τN ]

|X(s)− Y (s)|2
]

+
6C2

BDG + 2ε

ε
EQ

[

∫ γN
t ∧τN

0

|X(s)− Y (s)|2 dkN (s)
]

.

The time change t ≡ γNs gives

EQ

[

sup
s∈[0,γN

t ∧τN ]

|X(s)− Y (s)|2
]

≤ ‖σ‖2∞EQ

[

∫ γN
t ∧τN

0

|q(s)|2ds
]

+ εEQ

[

sup
s∈[0,γN

t ∧τN ]

|X(s)− Y (s)|2
]

+ 6
C2

BDG + ε

ε
EQ

[

∫ t

0

sup
r∈[0,γN

s ∧τN ]

|X(s)− Y (s)|2 ds
]

.

Choosing ε < 1 then using Gronwall’s lemma, we get

EQ

[

sup
s∈[0,γN

t ∧τN ]

|X(s)− Y (s)|2
]

≤
1

1− ε
‖σ‖2∞EQ

[

∫ T

0

|q(s)|2ds
]

exp
(

6
C2

BDG + ε

ε(1− ε)
T
)

where we also used the fact that τN ∧ γNt ≤ T . Letting successively t then N go to infinity, it follows
by using Fatou’s lemma, γNt ↑ ∞, τN ↑ T and the continuity of X and Y that

EQ

[

sup
s∈[0,T ]

|X(s)− Y (s)|2
]

≤ exp
(

6
C2

BDG + ε

ε(1− ε)
T
) 1

1− ε
‖σ‖2∞EQ

[

∫ T

0

|q(s)|2ds
]

.

Hence, we conclude from (3) and (5) that

W2
2 (µx, ν) ≤ 2 exp

(

6
C2

BDG + ε

ε(1− ε)
T
) 1

1− ε
‖σ‖2∞H(ν|µx).

This concludes the proof. �

Remark 4. As it appears from the proof, it is conceivable that the above lemma extends to functions
σ in weighted Sobolev spaces when the set of smooth functions with compact support is dense. We
restrict ourselves to W 0,1

2(d+1),loc([0, T ]) since this space is enough for our purpose and to simplify the

presentation.
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2.2. Proof of Theorem 1. We start by the case where condition (A) is fulfilled. By [1, Theorem 3.1]
equation (1) admits a unique strong solution. As in [1], the idea consists in using Zvonkin’s transform
in order to transform equation (1) into an SDE without drift then using Proposition 2 to conclude.
In the rest of the paper, we denote by L the differential operator defined by

Lφ := b∂xφ+
1

2
tr(σ∗σ∂xxφ).

According to [30, Theorem 2], there exists a T > 0 small enough such that the PDE
{

∂tϕ+ Lϕ = 0

ϕ(T, x) = x

admits a unique solution ϕ such that: for every t, the function x 7→ ϕ(t, x) is one-to-one from R
d onto

R
d, both ϕ and its inverseψ belong to W 1,2

p,loc([0, T ]) for each p > 1, both ϕ(t, ·) as well as its inverse

ψ(t, ·) are Lipschitz continuous, with Lipschitz constants depending on d, T, ‖b‖∞ and ‖σ‖∞.
Applying Itô-Krylov’s formula, see [14, Theorem 2.10.1] to ϕ(t,Xt) := Yt, it follows that Y

satisfies the drift-less SDE

Yt = Y0 +

∫ t

0

σ̃(s, Ys) dWs

with σ̃(t, x) := (σ∗∂xϕ)(t, ψ(t, y)). Since σ belongs to W 0,1
2(d+1),loc([0, T ]), it follows that ϕ belongs to

W 1,2
p,loc([0, T ]) for each p > 1 and both ϕ and ψ are Lipschitz, it follows that σ̃ ∈ W 0,1

2(d+1),loc([0, T ]).

Hence, by Lemma 2, the law µy of Y satisfies T2(C), where C is the constant in Proposition 2. But
Xt = ψ(t, Yt) and ψ is Lipschitz continuous. Thus, the result follows from [8, Lemma 2.1].

We now assume that condition (B) is fulfilled. We need to introduce the following Banach spaces:
For every k ≥ 0 and m ≥ 1, let Hk

m := (I −∆)−k/2Lm be the usual space of Bessel potentials on R
d

and denote

H
2,q
p ([0, T ]) := Lq([0, T ], H2

p) and H2,q
p ([0, T ]) := {u : [0, T ] → H2

p and ∂tu ∈ Lq
p([0, T ])}.

The space H2
p is equipped with the norm

‖u‖H2
p
:= ‖(I −∆)u‖Lp

making it isomorphic to the Sobolev space W 2
p (R

d).
Under assumption (B), the existence and uniqueness of X follow e.g. from [29, Theorem 1.1].

We now show that the law µx of X satisfies T2(C) for some C. Let Cb be a constant to be determined
later. By [13, Theorem 10.3 and Remark 10.4], the PDE

{

∂tu
i + Lui + bi

1+Cb
= 0

ui(T, x) = 0

admits a unique solution ui ∈ H2,q
p ([0, T ]) and this solution satisfies

||∂tu
i||Lq

p
+ ||ui||

H
2,q
p ([0,T ]) ≤

C1

1 + Cb
||bi||Lq

p

for some constant C1 depending on d, p, q, T and ||b||Lq
p
. Furthermore, since d/p+ 2/q < 1, it follows

by [13, Lemma 10.2] that

|∂xu
i| ≤ C2T

−1/q
(

||ui||
H

2,q
p ([0,T ]) + T ||∂tu

i||Lq
p

)

with δ ∈ (0, 1] such that 2δ + d
p + 2

q < 2, and C2 a constant depending on p, q and δ. Therefore, it

holds that

(8) |∂xu
i| ≤ C1C2T

−1/q(T + 1)
1

1 + Cb
||bi||Lq

p
≤

Cb

1 + Cb
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with the choice Cb := C1C2T
−1/q(T + 1)maxi∈{1,...,d} ||b

i||Lq
p
. Now consider the function Φi(t, x) :=

xi + ui(t, x), i = 1, . . . , d. It is easily checked that the function Φi solves the PDE

(9)

{

∂tΦ
i + LΦi = 0

Φi(T, x) = xi.

Put Φ(t, x) = (Φ1(t, x), . . . ,Φd(t, x)). Due to (8), it holds that

1

1 + Cb
|x− y| ≤ |Φ(x) − Φ(y)| ≤

1 + 2Cb

1 + Cb
|x− y| for all x, y ∈ R

d.

As a consequence, Φ is one-to-one, (see e.g. the corollary on page 87 of [12]), and its inverse Ψ := Φ−1

is 1
1+Cb

-Lipschitz continuous.

Since for every t, u(t, ·) belongs to H2
p , then it can be seen as an element of W 2

p (R
d). Moreover,

the derivative of u with respect to t belongs to Lp, it thus follows that u belongs to W 1,2
p ([0, T ]).

Hence, the function Φ(t, x) := x + u(t, x) belongs to W 1,2
p,loc([0, T ]). It-Krylov’s formula applied to Φ

gives

Yt := Φ(t,Xt) = Φ(0, x) +

∫ t

0

(∂tΦ+ LΦ)(s,Xs) ds+

∫ t

0

∂xΦ(s,Xs)σ dWs

= Φ(0, x) +

∫ t

0

σ̃(s, Ys) dWs

with σ̃(t, y) := (σ∗∂xΦ)(t,Ψ(t, y)), and where the second equation follows by (9).
The rest of the proof follows as in the case of assumption (A). �

3. Examples

Let us now present a few examples of multidimensional diffusion models with non-Lipschitz
coefficients which fit to our framework.

3.1. Particles interacting through their rank. Let W 1, . . .Wn be n independent Brownian mo-
tions. Rank-based interaction models are given by

dX i,n(t) =

n
∑

j=1

δj1{Xi,n(t)=X(i),n(t)} dt+ σi(t) dW i(t) X i,n(0) = xi

for some real numbers δj , some measurable, bounded functions σi, with X(1),n(t) ≤ X(2),n(t) ≤ · · · ≤

X(n),n(t) is the system in increasing order. More generally, this model can be written as

dX i,n(t) = b
( 1

n

n
∑

j=1

1{Xn,j(t)≤Xn,i(t)}

)

dt+ σi(t) dW i(t) X i,n(0) = xi

for a given (deterministic) functions b. This model was introduced by Fernholz and Karatzas [10]
in the context of stochastic portfolio theory. Concentration of measures results for such systems can
be found in [22]. When 0 < c ≤ infi,t |σ

i(t)| ≤ supi,t |σ
i(t)| ≤ C for some c, C and b ∈ L∞ or

b ∈ Lp(R, dx) (with appropriate p, d), our main result shows that the law of (X1,n, . . . , Xn,n) satisfies
T2(C) for some C > 0. This result is also valid for the so-called (finite) Atlas model of [2] given by

dX i,n(t) =

n
∑

j=1

δ1{Xi,n(t)=Xpi,n(t)} dt+ σi(t) dW i(t) X i,n(0) = xi,

for some constant δ and a permutation (p1, . . . , pn) of (1, . . . , n).
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3.2. Particles in quantile interaction. Quantile interaction models are given by

dX i,n(t) = b(t,Xn,i(t), V α,n(t)) dt + σ(t,Xn,i(t)) dW i(t) X i,n(0) = xi,

where V α,n(t) is the quantile at level α ∈ [0, 1] of the empirical measure of the system
(X1,n(t), . . . , Xn,n(t)). That is,

V α,n(t) := inf
{

u ∈ R :
1

n

n
∑

i=1

1{Xi,n(t)≤u} ≥ α
}

.

This model is considered for instance in [6] in connection to exchangeable particle systems. Theorem
1 can be applied to this case under integrability conditions on b and mild regularity conditions σ.

3.3. Brownian motion with random drift. In addition to particle systems, our main result can
also allow to derive transportation inequalities for semimartingales. We illustrate this in the next
corollary. Let g be a progressive stochastic process. We call Brownian motion with drift the process

(10) X(t) = x+

∫ t

0

g(s) ds+ σW (t).

We have the following corollary of Theorem 1:

Corollary 5. Assume that the constant matrix σ satisfies (2). If the drift g is bounded and T small
enough, then the law µx

t of Xt given by (10) satisfies T2(C) for some C > 0 depending on T, σ, d and
‖g‖∞.

Proof. Consider the Borel measurable function

b(t, x) := E[g(t)|X(t) = x].

By [5, Corollary 3.7], we have µx
t = µ̃t, where µ̃t is the law of the weak solution X̃t of the SDE

(11) X̃(t) = x+

∫ t

0

b(s, X̃(s)) ds+ σW (t).

Since g is bounded so is the function b. Thus, the SDE (11) admits a unique strong solution, see

e.g. [1] or [28]. Thus, X̃ is necessarily a strong solution and by Theorem 1 µ̃ satisfies T2(C), which
concludes the argument. �
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