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Abstract

Downhill running (DR) is a whole-body exercise model that is used to investigate the physiological consequences of eccentric
muscle actions and/or exercise-induced muscle damage (EIMD). In a sporting context, DR sections can be part of running
disciplines (o -road and road running) and can accentuate EIMD, leading to a reduction in performance. The purpose of
this narrative review is to: (1) better inform on the acute and delayed physiological e ects of DR; (2) identify and discuss,
using a comprehensive approach, the DR characteristics that a ect the physiological responses to DR and their potential
interactions; (3) provide the current state of evidence on preventive and in-situ strategies to better adapt to DR. Key ndings
of this review show that DR may have an impact on exercise performance by altering muscle structure and function due
to EIMD. In the majority of studies, EIMD are assessed through isometric maximal voluntary contraction, blood creatine
kinase and delayed onset muscle soreness, with DR characteristics (slope, exercise duration, and running speed) acting «
the main in uencing factors. In previous studies, the median (25th percentilé5tQ percentile, Q) slope, exercise dura-

tion, and running speed were 12% ( 15%; 10%), 40 min (30 min; 45 min) and 11.3 Km®.8 km ht ; 12.9 km ht),
respectively. Regardless of DR characteristics, people the least accustomed to DR generally experienced the most EIMD.
There is growing evidence to suggest that preventive strategies that consist of prior exposure to DR are the most e ective
to better tolerate DR. The e ectiveness of in-situ strategies such as lower limb compression garments and speci ¢ footwear
remains to be con rmed. Our review nally highlights important discrepancies between studies in the assessment of EIMD,
DR protocols and populations, which prevent drawing rm conclusions on factors that most in uence the response to DR,
and adaptive strategies to DR.

*  Julien Louis
J.B.Louis@Ijmu.ac.uk
Université de Toulon, Laboratoire IAPS, Toulon, France

Research Institute for Sport and Exercise Sciences, Liverpool
John Moores University, Liverpool L3 3AF, UK


http://orcid.org/0000-0002-9109-0958
http://crossmark.crossref.org/dialog/?doi=10.1007/s40279-020-01355-z&domain=pdf

B. Bontemps et al.

factors [§ 6]. Thus, the DR modality has often been used
Key Points for di erent purposes including: (1) studying the recovery
kinetics of physical performance following muscle damage

Due to its eccentric nature, downhill running (DR) (e.g. [79]); (2) testing the reliability and validity of varied
induces lower limb muscle damage, manifested by alteratechniques to assess EIMD (e.g, 16]); (3) studying the
tions in muscle structure, muscle function, and ensuing e ects of strenuous exercise on physiological adaptations
running performance for up to several days after exerciseand/or alterations (e.g. [113]); (4) testing di erent strate-
Manipulating DR characteristics (slope, running speed, angies to attenuate EIMD and/or improve subsequent recovery
duration), independently or not, can in uence the extent ~ (€-9- [14-16]). .

of exercise-induced muscle damage (EIMD). Although In a sporting context, DR sections can be part of o -road

trained and/or accustomed people generally experience le§4nning races mostly taking place in natural environment
muscle damage following DR, it is still unknown if sex and unsealed roads (e.g. trail running, mountain running, fell

and/or age may in uence the adaptation to DR. running an_d cross-country running, prienteering, obstacle
course racing or ultramarathon running, [17]) or road run-
Scienti ¢ evidence suggests preventive strategies that  ning races including downhill sections (e.g. the St. George
consist of prior exposure to DR to limit the extent of  marathon, St George, USA; the Holualoa Tuscon marathon,
muscle damage induced by DR. Tuscon, USA; the Big Sur International marathon, Big Sur,

Evidence is lacking to support the use of in-situ strate- USA) [18, 19]. Due to its eccentric-based muscle action
gies such as compression garments, speci ¢ footwear, ofnodality, DR may play a major role in the occurrence of
modi cation in running stride to limit muscle damage ~ heuromuscular fatigue (especially due to peripheral factors)

induced by DR, which highlights the need for further ~ and muscle damage, and thus represents a main challenge
high-quality research. for runners. For example, the maximal strength production

capacity of lower-limb muscles (i.e. knee extensors, KE,
and plantar exors, PF), often assessed through isometric
maximal voluntary contraction (MVC) is generally dramati-
cally reduced ( 15to 40%) following trail running races
(i.e. the most popular o -road running races, taking place
in natural environment over a variety of terrains with mini-
1 Introduction mal paved or asphalt roads; for review, [17]) (e.g. PPJ)-
Although DR characteristics (running speed and/or inten-
Eccentric muscle contractions occur when the magnitudsity, running duration and slope) vary among running disci-
of the force applied to the muscle exceeds the strength prplines, they do not predispose to the extent of an alteration
duced by the muscle itself (i.e. negative work), resulting in & strength production capacity, [23]. For example, com-
lengthening action of the musculotendinous system. Ecceparable force/torque losses and peripheral alterations were
tric muscle contractions are known to induce high mechanieported following a 6.5 km DR at maximal speed (altitude
cal strain on the musculotendinous system, leading to modrop: 1264 m; average slope: 16.8%) and in ultra-mar
erate to severe exercise-induced muscle damage (EINID) [fathons (i.e> 42.195 km) in experienced trail runners (for
In laboratory settings, local (i.e. single muscle grougeview, [J). In line with these observations, it has been sug-
tested with an isokinetic dynamometer) and whole-bodgested that performance in trail running is largely in uenced
eccentric-based models such as eccentric cycling and dowsy the demanding nature of graded sections (especially DR
hill running (DR) have been used to examine the physiologisections where eccentric muscle actions are predominant),
cal consequences of eccentric muscle actions and/or EIMIBading to EIMD including neuromuscular fatigug. [Bhe
[2]. For example, intense and/or prolonged DR is wellsame hypothesis may be applied to other running disciplines
known to induce muscle functional alteration$. [@lore  that include notable DR sections.
precisely, DR generally leads to substantial neuromuscular On the other hand, DR could be used during speci c train-
fatigue which can originate from both peripheral and cening periods to improve running performance via neural and
tral mechanisms. The peripheral component of neuromusausculotendinous adaptations. Some narrative reviews have
cular fatigue may be attributed to longer muscle length (i.docused on the physiological and/or biomechanical adapta
overstretched sarcomeres) during eccentric muscle actiotisns to trail running and/or prolonged graded runnit [
over braking phases, leading to myo brillar damage such a&3]. However, a comprehensive analysis of the e ects of DR
disrupted weaker sarcomeres and/or excitation—contracti@n both in-situ physiological responses and recovery kinet-
coupling failure [14]. The central component of neuromus-ics (i.e. acute and delayed physiological responses and EIMD
cular fatigue may be attributed to spinal and/or supraspinaharkers) according to training level is lacking. In parallel,
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anecdotal data from eld observations and a growing numbe2 Muscular Alterations Following Downhill
of research studies show an interest in strategies to facilitate Running

the adaptation to DR, namely reduce EIMD. These strategies
include for example, DR training, wearing compression garGrade-speci ¢ biomechanical and neuromuscular altera-
ments and using speci ¢ footwear, though it is di cult to draw tions occur in running (for review, [18]). When compared
conclusions due to the variety of results. to level running, DR is characterized by repeated and pro-
Within this framework, the purpose of this narrative reviewionged eccentric muscle actions of lower-limb muscles
is threefold: (1) to further our understanding of the physiof14,24], lowered capacity of the stretch—shortening cycle
logical responses to DR; (2) to identify and discuss, using[@6,27], alterations in foot strike pattern (usually rear-foot
comprehensive approach, the DR characteristics that a ect thgrike pattern, i.e. heel contacts rst) [278], changes in
physiological responses to DR and their potential interactiong‘;ound reaction forces (larger normal impact force and
(3) to provide a synthesis of evidence on strategies to betigfeater parallel braking force compared to level running,
tolerate DR by limiting EIMD. Manuscripts were acquired bywhatever the slope studied) [230], speci ¢ mechani-
searching the electronic databases of the US National Libragal energy uctuations of the centre of mass during each
of Medicine (PubMed), ScienceDirect and SPORTDiscustride (e.g. greater negative external work and lower posi-
using the following keywords: “running” AND “downhill” tive external work, i.e. the work done to decelerate and
OR “decline” OR “grade” OR “gradient” OR “slope” OR accelerate the body’s centre of mass with respect to the
“muscle damage” OR “muscle fatigue” OR “biomechanics”environment, respectively?§, 29, 31-34], and alterations
OR *“strategy” OR “compression garment” OR “running-gar in impact shock attenuation (e.g. greater tibial accelera-
ment” OR “preconditioning” OR “training” OR “repeated bout tion) [27, 33, 35-37]. Those grade-speci c alterations
e ect” OR *footwear”. Electronic database searching was suporiginate from the greater mechanical strain applied to the
plemented by examining reference sections of relevant articlggwer-limb musculoskeletal system during the foot—ground
(i.e. hand search). The literature search was conducted updéntact time in DR, which may lead to accentuated acute
March 2020. In the entire manuscript, we limited our analysignd delayed EIMD (e.g. structural muscle alterations,
to studies including DR only as a modality of whole-bodyleakage of speci c-muscle proteins into the bloodstream,
eccentric-biased exercise, with human participants only. Weduction in MVC force/torque) [38], and consequently
did not consider studies using other means (e.g. steps, oigteration in running economy (RE) and performance [3
legged DR, sprint-assisted DR, eccentric cycling or eccentritg]. As such, a better understanding of these alterations
muscle actions on isokinetic dynamometer) of generating mufsllowing DR is the rst stage in our aim to investigate the
cle damage or eccentric muscle actions. In studies includimyR characteristics responsible for such alterations, and
DR exercises that also tested a nutritional strategy or a strategiyaptative strategies.
to limit EIMD, only the placebo groups (with no strategy) were
included in the analyses performed in the second part of the
manuscript to identify and discuss DR factors responsible f@ .1 Structural Muscular Alterations Following
EIMD and their interaction. No limit to the search domainwas  Downhill Running
applied regarding population characteristics, training level, and
DR characteristics (i.e. running speed and/or intensity, exercigghe presence of EIMD following strenuous exercise can
duration, and slope). In the present review, the generic terge assessed through histological analysis of biopsy sam-
‘EIMD" refers to direct markers of muscle damage includingples and magnetic resonance imaging (MRI) of muscle
ultrastructural alterations (e.g. myo brillar disruption) as wellgroups (KE and PF are the muscle groups the most inves-
as indirect markers such as physiological (e.g. systemic e uxigated) involved in DR. Myofibrillar disruptions and
of myocellular enzymes and proteins), perceptual (e.g. delaye@crosis in lower-limb (e.g. vastus lateralis) muscles are
onset muscle soreness) and functional alterations (e.g. lossg@nerally reported after eccentric exercise [39]. Follow
MVC force/torque) following DR [24]. Functional alterations ing 30-min treadmill DR (slope: 12%; intensity: 80% of
refer to the concept of “neuromuscular fatigue” de ned asnaximal aerobic velocity recorded on level grade), Féas-
any exercise-induced reduction in voluntary maximal forcgon et al. [40] reported important ultrastructural muscular
or power [25]. alterations in the vastus lateralis of healthy males. These
alterations included streaming, disruption and dissolution
of Z-disk structures associated with A-band disruption
and misalignment of myo brils, and disturbances of the
cross-striated band pattern along the longitudinal sections.
Increases in skeletal muscle mMRNA expression of several
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in ammation-related genes, increases in pro-in ammatoryMVC torque of KE, accompanied by a greater occurrence of
cytokine concentration, and satellite cells proliferation irnthe peripheral component of neuromuscular fatigue, in-situ
KE muscles were also reported after DR [42]. Using  perceived exertion (in gluteus muscles) and delayed muscle
MRI, Maéo et al. [43] also reported structural musculapain (in KE, PF and gluteus) following a 45-min DR bout,
alterations (i.e. local in ammatory oedema estimated viasompared to uphill and level running bouts performed at the
transverse relaxation timey)Tin both KE and PF mus- same relative intensity (same reserve heart rate, HR).
cle groups following 45-min treadmill DR (slope: 15%; Immediately after DR, large reductions in isometric MVC
average speed: 10.0 knt hin healthy young adults. force/torque of KE and PF muscles are generally reported,
The important leakage of muscle-speci c proteins (creand may vary from 14 to 55% for KE [59, 10,15, 38,
atine kinase, CK; myoglobin, Mb; and lactate dehydroge43,58-87] and from 15to 25% for PF [9 15,43]. Simi-
nase, LDH) into the blood, accompanied by increases ilarly, a decline in muscle performance (expressed as MVC
muscleC&* andK* content following strenuous exercise, force/torque loss or endurance capacity) was reported during
are also considered common indirect markers of EIMDsokinetic muscle actions (tested from 0.52 to 5.2 raced
[44-47]. Two main mechanisms could explain this e ux of from 0.52 to 2.6 rad’s for concentric and eccentric modali
muscle-speci ¢ proteins into the blood stream. Firstly, musties, respectively) [588, 89], dynamic strength measure-
cle bres may exhibit an increased membrane permeabilitynent such as counter movement jump f®, and muscle
following an increase in cytoplasma@iet” through an inhi- endurance test [91]. Decrements in MVC force/torque gen-
bition of theCa®* pump that actively transpor®* out of  erally last up to 4-5 days before complete recovery788,
the cell, thus promoting the activation of & channel and  73,92].
leading to membrane damagd@é] In addition, this could be DR is well-known to alter muscle structure and to
explained by local tissue damage induced by the eccentriicduce neuromuscular fatigue. More speci cally, the acute
muscle actions which may cause a degeneration of the mugduction in MVC force/torque following DR is typically
cle structure49]. Peake et al 0] reported a large increase associated with a reduction in maximal central drive (i.e.
(+ 1800%) in plasma Mb concentration 1-h post-DR (45 mim mechanism associated with a central component of neu-
at 60% , 10% slope; with corresponding to romuscular fatigue, assessed via maximal voluntary activa-
the maximal aerobic capacity) followed by a large increasgon, VA; from 2.5to 8% in KE and PF; [9 10, 15])
(+420%) in plasma CK concentration 24-h post-DR in welland the so-called “low-frequency fatigue”. The latter (usu-
trained runners. This e ux of muscle-speci c proteins into ally investigated via muscle or nerve electrical stimulation)
the blood stream may persist for several days following DRmanifests through a decrease of the low (10-20 Hz)-to-
For example, Malm et al. [38] reported a signi cant e ux high (50-100 Hz) frequency doublet rat@gd], re ecting
of serum CK (+150%) up to 7 days following DR. a reduction irC&"* release from the sarcoplasmic reticulum
These structural muscular alterations occurring during93]. It is thus likely that the failure in excitation—contrac-
DR may be accompanied by MVC force/torque decrementson coupling is mostly responsible for the occurrence of the
[51,52] and thus, re ect the level of neuromuscular fatigueperipheral component of nheuromuscular fatigue following
[25]. Since the manifestation of MVC force/torque loss andR. In addition, the acute reduction in maximal central drive
structural muscular alteration are concomitant [5g, it  immediately after DR may contribute to the acute reduction

appears important to discuss their relationship. in MVC force/torque. Such reduction in VA may originate
from the spinal and/or supraspinal level, with for instance a

2.2 Functional Muscular Alterations Following role of re exes mediated by muscle -1V a erents that may
Downhill Running reduce the recruitment and/or ring rates of motoneurons

[25]. In previous studies, the reduction in maximal central
Loss of MVC force/torque is commonly used to assess thdrive was usually observed through peripheral nerve stimu-
global state of neuromuscular fatigue that may originat&ation (PNS). However, PNS does not allow quanti cation of
from both peripheral and central level5]. Because the the source of drive to the motoneurons making unclear the
extent of force/torque loss is also in uenced by the numberelative contribution of spinal and supraspinal components
of muscle bres su ering from myo brillar disruption and/ in the reduction of MVC force/torque. Bulbulian and Bowles
or excitation—contraction failure [453,55-57], it may pro-  [7] investigated the spinal component using the Ho man
vide information on the extent of EIMD [54]. The reductionre ex (H-re ex) expressed as a ratio of the maximal electri-
in MVC force/torque may depend on the exercise modalkally stimulated muscle action potential (M, ratio).
ity (i.e. grade), exercise characteristics (duration, runninghe authors reported a reduction if M.« ratio follow-
speed and/or intensity) and population characteristics (ageg a 20-min DR (slope: 10%; intensity: 50% )
sex, training level). For example, Garnier et al. [58] reportede ecting a reduction in motoneuron pool excitability, in
greater decrements in isokinetic (concentric and eccentritjgher proportion compared to a level bout (e.g. 24.6%
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versus 9.3%, respectively) performed at a comparable It is well-reported that MVC force/torque is impaired for
metabolic cost (expressed as % ). It is possible that several days following DR (up to 4-5 days for a complete
repeated and/or prolonged eccentric muscle actions coutdcovery; see Figl). However, a better understanding of
potentially damage muscle spindles [98], which may the mechanisms responsible for delayed MVC force/torque
impair motoneuron excitability by reducihga erents input  loss is warranted. Firstly, it is likely that several mechanisms
to the motoneuron pool. However, the H-re ex does notelated to EIMD could play a major role in delayed MVC
allow inferences on the potential role of supraspinal mechderce/torque loss [991.00], including structural muscular
nisms implicated in the reduction of MVC force/torquealterations (e.g. sarcomeres ‘popping’-disruption, stream-
post DR. A recent study reported an increased corticosping, disruption, and dissolution of Z-disk structures) and
nal excitability (assessed through motor-evoked potentiaimpairments in the excitation—contraction coupling (e.g.
elicited by transcranial magnetic stimulation and recordedamaged T-tubules, sarcoplasmic reticulum and sarco-
from theabductor pollicis brevis) 30-min post DR (dura- lemma, impairedC&* release by the sarcoplasmic reticu-
tion: 30 min; slope: 10%; intensity: 75#R,qeend- HOW-  lum and impaired myo brillar sensibility to C4). To date,
ever, the absence of cortical VA measurements in this stuayly a few studies have investigated recovery (expressed as
makes unclear the potential role of changes in corticospMVC torque and coupled with peripheral and central assess-
nal excitability/inhibition in the occurrence of supraspinalments of neuromuscular fatigue) up to 48-h post DR5,
fatigue post DR. Future studies should combine measuresAlthough Ehrstrém et al. [15] reported a low-frequency force
corticospinal excitability and inhibition (e.g. using paired-depression 24-h post DR (duration: 40 min; slope: 15%;
pulse transcranial magnetic stimulation) with measures oftensity: 55% ), such alterations were not recorded
cortical VA, obtained from muscles directly mobilised-dur 48-h after a 6.5-km ecological DR] j@here isometric MVC

ing DR (e.g. KE and/or PF). Furthermore, although no comtorque was still reduced. It is possible that the prolonged low-
parison analysis of VA was conducted between laboratorfyequency force depression may be underestimated within
and ecological settings, the DR surface could in uence thdays following DR, as it has been observed after an isoki-
magnitude of acute and delayed central fatigue. A greateetic eccentric exercise (200 eccentric MVCs of dorsi exor
reduction in VA could be expected upon completion of amuscles) [101]. The decrement in low-frequency force could
ecological DR session, due to the higher cognitive demandi® higher and/or longer than the aforementioned results and
of running on technical single tracks, compared to laboratorthus may partly explain the prolonged MVC force/torque
conditions. For instance, DR in an ecological setting, comess. Moreover, a modi cation in the muscle length-tension
pared to a laboratory, may further tax cognitive processeaglationship up to 48-h post could partly explain the MVC
such as working memory and spatial navigation planninfprce/torque decrement following DR, as observed following
and thus exacerbate the activation of cortical areas such excentric-biased exercises [1QB3]. Finally, the important

the prefrontal cortex (PFC) [96]. A greater mobilization ofleakage of CK, Mb and LDH into the bloodstream, often
brain resources may be expected during DR in an ecologssociated with the appearance of delayed onset muscle sore-
cal setting, with the necessity to accomplish the motor tagkess (DOMS) [53] and the in ammatory response, may con-
while dealing with the additional cognitive demand (i.e. duatribute to delayed MVC force/torque loss [104]. Although the
task). For example, a greater and earlier depletion of bramelationship between the in ammatory response, DOMS and
resources in cortical structures such as the PFC may neddVC torque is not clearl05, all these alterations tend to
tively impact the activity of interrelated motor areas suchdisappear within 4-10 days post DR,[73]. It is noteworthy

as the motor cortex, and lead to a greater reduction of VAhat few studies have compared the extent of neuromuscular
In line with this assumption, Mehta and ParasurarBah [ fatigue between KE and PF following DR, with contrasting
reported a decrease in PFC oxygenation at exhaustion foksults P, 15, 43]. Regarding isometric MVC torque, some
lowing a fatiguing cognitive-motor dual task (i.e. submaxi-studies showed greater decrements in KE than in PB315,
mal handgrip and concomitant mental-math task) compareghereas Giandolini et al9] reported the contrary. The latter

to the motor task performed alone. Moreover, Chatain et alesults appear di cult to interpret, since higher peripheral
[98] found a greater decrease in VA during a fatiguing cogalterations (e.g. amplitude torque reduction to evoked twitch
nitive-motor dual task (i.e. intermittent isometric quadricepgorque, M-wave and 10 Hz-to-100 Hz ratio) were reported
contractions with concomitant n-back task) compared to thia KE despite lower isometric MVC torque loss after DR.
motor task alone. Because replicating the physiological anthese con icting results warrant the need for additional stud-
cognitive demands of ecological DR in a laboratory settinges investigating possible muscle-speci ¢ adaptations to DR.
is challenging, this paradigm may be tested during treadmill While DR studies have mostly investigated the alteration
DR by adding a concomitant cognitive task that may repef muscle function using isometric testing, this may not rep-
licate the demanding real-life environment characterizingesent the most relevant testing modality. Indeed, single-joint
o -road running (e.g. using virtual reality technology). sustained maximal contractions do not represent the real
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Fig. 1 a Decrease (% from baseline) in isometric maximal voluntarys8, 60, 66, 71, 75, 84, 89, 135, 151, 156, 159, 171,178,179, 182,
contraction (MVC) torque of knee extensors after downhill runningl84—-188]) responses immediately post-, 24 h post-, 48 h post-, 72 h
(DR); b increase (% from baseline) in blood (plasma and serunpost- and 96 h post-DR. In all panels, circles and bars refer to indi-
creatine kinase (CK) concentration after DR; ¢ delayed onset musidual and mean data, respectively, in white and black for untrained
cle soreness (DOMS) response (0—100 mm evaluated on visual ar(ae. healthy and/or recreationally active) and trained populations (i.e.
logue scale) for knee extensors after DR. Based on data from original >54-60 ml min kgt and were involved in endurance-based
research articles reporting isometric MVC force/torque decrementactivities at least 3 times/week), respectively. In the cases where data
(n=37; [5,9, 10, 15, 38, 43, 58-87]), blood CK elevation (n=83; were not fully presented in the manuscript, data were extracted from
[14, 16, 38,40-42,44, 46, 50, 59-62,65-67,70, 72—75,77, 80, 81, original gures using ImageJ software (ImageJ V.1.45 s, National
84, 85, 87-90,92, 121, 134-183]) and DOMS (n=23; [815, 38, Institute of Health, MD, USA)

demand of most activities [106]. Future studies should commot only in a “pre-post” experimental design. RE is consid-
bine various approaches including assessment of isometegced a major determinant of running performance [108]
and eccentric (recommended from 0.52 t0 2.1 fadMVC  and success in competitive distance running [109]. It
force/torque, and whole-body (e.g. counter movement jumis typically measured to evaluate any form of intervention
or squat jump) or isolated power/maximal velocity tests t@n global metabolic e ciency (e.g. [732,111]). In DR

better characterize EIMD. studies, RE is traditionally de ned as the submaximal and
steady-state oxygen uptake (, mlO, min! kg! with rate
2.3 Running Economy Alterations Following of exchange ratio, RER1) for a given running speed and is
Downhill Running generally assessed on level grade (e.g.923112]). How

ever, RE is often used synonymously with other indicators of
In contrast with the aforementioned EIMD and musclanetabolic e ciency. In such cases, RE may be expressed as
fatigue variables, RE may be measured during exercise andygen cosfmlO, kg! km?) from the body mass-speci ¢
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. Given that substrate used to cover energy expendituranning speed [73]. While the time-course of RE alterations
may vary according to exercise intensity and duration (foseems similar between studies, it was suggested that partici-
review, [113]), interpretations resulting only from the use opants unaccustomed to running and/or untrained in running
milliliters of oxygen (including oxygen cost) must be madecould experience greater alterations in RE during, immedi-
with caution. For these reasons, expressing RE as groately after and within days following DR [84].
energy cost (in J ki m? or kcal kgt km?), where each The change in discharge rate of motor units over time

valued is converted to its metabolic energy equivalentl15], the preponderant type Il muscle ber recruitment
(which depends on the RER) would be more appropriatel, 122], and substantial normal impact force and parallel
[114]. In the literature, an enhanced RE is associated witiraking force 27] could account for the increased metabolic
a lower oxygen demand, energy cost or oxygen cost fordemand at the end of prolonged DR. This is aligned with the
given running speed. fact that type Il bres, which are energetically less e cient

The negative slope of the terrain could also in uence REhan type | bres [125], may be further recruited follow
due to the higher proportion of eccentric muscle actionsig DR to maintain force production [126], whereas type
compared to at running. Although the recruitment orderl bres could preferentially be recruited during DR [122].
of motor units has been recently reported to be similar duRE alteration after DR may depend on the extent of EIMD,
ing submaximal shortening and lengthening contractionsince a greater neural input to the muscle is required to o set
the discharge rate is systematically lower during lengtherthe lack of e ciency of damaged bres [122,27], and to
ing actions (for review,119) and thus, might lower the maintain the force production capacity (particularly neces-
metabolic demand [116]. DR would be metabolically lessary during the push-o phase of the running cycle) [128].
demanding than level running and uphill running for a-similn contrast, Lima et al. [84] have recently demonstrated that
lar running speed and/or relative intensity (e.g. mechanicalterations of RE (expressed as ) following DR (up to
power, HR and ) [28,31,117-4120]. For instance, at 75% 3 days after one 30-min DR bout; slope: 15%; average
HR eserve Garnier et al. [117] linked the lower alteration in speed: 9.9 km h) were not explained by changes in markers
RE (expressed as ) during DR to a greater involvement of EIMD (serum CK elevation, DOMS, changes in muscle
of passive elastic structures in strength production comparddnction) or alterations in running mechanics. The authors
to level and uphill treadmill exercise. The optimum slopespeculated that other parameters might alter RE following
(for which the metabolic demand is the lowest) is still DR, including haemodynamic alterations (such as damaged
matter of debate due to the variety in DR protocols used amapillaries [129], compromised ow-mediated vasodilation

training levels of study participants. [130] and oxygen delivery [131] to the damaged sites) and
Cardiorespiratory changes (e.g. increase in HR, and  the increase in resting energy expenditure [132].
minute ventilation) for a set speed [112]1,122], accom- Taken together, these data provide evidence that pro-

panied by an increase in core body temperature [121], gelonged DR can lead to substantial physiological and bio-
erally occur during intense and/or prolonged DR sessionmechanical alterations, altering RE and subsequent running
and may be dependent on the slope that is used [123]. Fmerformance. While EIMD is well-known to be the main
example, a10% increase in  was measured immedi- disruptor of running performance and subsequent recovery,
ately after a prolonged DR (30—40 min) in recreational rununderlying mechanisms which could in uence the magni-
ners [121122] whereas the increase was lowe6(8%) in  tude of muscle damage following DR must be clari ed.
well-trained runners [15]. A reduced amplitude of the

slow component was also observed during a 15-min DR bout

(slope: 15%; average speed: 8.5 knt hin well-trained 3 Factors In uencing The Magnitude

runners following the completion of a 15-min uphill bout of Muscle Damage Following Downhill

(at the same running speed, with 10-min recovery between Running

bouts [124]).

Alterations in RE were reported in various prolongedAlthough the physiological responses to DR have been
DR protocols and within several hours to days followingextensively investigated, the in uence of DR characteristics
DR [71, 73,84, 112 121, 127]. A 3-18% decrease in RE (i.e. slope, running speed and/or intensity, and exercise dura-
(expressed as  or energy cost) was reported during at tion) on the magnitude of EIMD is still unclear. The variety
treadmill running sessions performed immediately after DRn population characteristics (i.e. training status, sex, age)
[71,73,84,112] and may be associated with an increase iamong studies also adds complexity to our understanding.
stride frequency and/or reduction in the range of motion oAs discussed in the previous section, muscle damage follow
lower-limb joints [64,71,73,84,92,112]. Chen et al. [71] ing DR is classically monitored within the rst 24-h to 96-h
reported a 4—-7% increase in up to 3 days after a 30-min following exercise via indirect markers of muscle structure,
DR (slope: 15%; intensity: 70% ), regardless of muscle function and perceptions of muscle soreness. As
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such, we analysed the time-course of changes in isometh@as been shown to promote higher physiological mus-
MVC force/torque (for KE only), DOMS (for KE only using cle resistance to exercise due to a combination of neural
a 0-100 mm visual analogue scale) and blood CK, the mo&notor unit recruitment), morphological (muscle—-tendon
reported markers in the literature, within this time windowunit sti ness) and structural adaptations (muscle fascicle
The purpose of this comprehensive analysis is to presepénnation angle, and fascicle length) [1890]. These

the current state of knowledge on how DR characteristicdata support the importance of training status and training
in uence muscle damage post DR while highlighting themodality to reduce the occurrence of EIMD. It is imypor
lack of data in certain areas. The main factors included itant to note that, in most research studies, endurance
the analysis were the training level (trainedumsrained in  trained populations were not familiarised with DR and/or
running) and DR characteristics (exercise duration, runningccentric-based exercises. A greater training e ect can be
speed and slope), while additional factors (age, sex) weexpected in participants familiarised with DR. They could

also discussed. bene t the most from speci c training adaptations due to
the important eccentric component of DR and, thus, limit
3.1 In uence of Training Level and Downbhill the magnitude of muscle damage following DR.
Running Characteristics When analyzing EIMD markers (Fi@), it is also

important to consider the methodological differences

To investigate the e ect of training level on indirect mark between DR protocols. Slope, duration, running speed as
ers of EIMD, data extracted from original articles werewell as the experimental design (i.e. continuous DR vs
separated into two di erent groups: untrained and traineéhtermittent DR) may in uence the magnitude of EIMD.
populations. Untrained populations are described as healti@verall, in previous studies, for trained and untrained
and/or recreationally active. In contrast, trained populationgopulations, the median () slope, exercise duration,
generally present a >54-60 ml min kgt and are and running speed were 12.0% ( 15.0%; 10.0%),
involved in endurance-based activities (i.e. long-distancd0 min (30 min; 45 min) and 11.3 km'h(9.8 km h' ;
running, triathlon, trail running) at least 3 times/week [133]12.9 km h' ), respectively. More speci cally, in studies

The literature describes acute and delayed changesassessing isometric MVC in response to DR, the median
indirect markers of muscle damage after DR (E)gThe (Q;; Q3) slope was 14.95% ( 15.0%; 12.0%, Fig2a).
reduction in isometric MVC force/torque generally peakdn studies assessing CK, and DOMS following DR, the
immediately post-DR [/, 10,15,38,43,58-87], whereas median (Q; Q3) slope was 10% ( 15.0%; 10.0%)
increases in blood CK [146,38,40-42,44,46,50,59-62, and 12.8% ( 15.8%; 10.0%), respectively (Fig2b,
65-67, 70, 72-75, 77, 80, 81, 84, 85, 8790, 92, 121,  ¢). The median@,; Q,) running speed was 11.5 km'h
134-183] and DOMS [815, 38,58, 60,66,71,75,84,89, (10.1 km h'; 12.9 km h'), 11.3 km h* (9.7 km h*;
135,151,156,159,171,178,179,182,184-188] peak from  12.5 km.ht ), 12.3 km.ht (9.7 km.h'; 14.6 km.h') in
24 to 48 h post-DR. Immediately post DR, a greater reductudies analysing isometric MVC, CK and DOMS, respec
tion in isometric MVC force/torque is observed in untrainedively (Fig. 2d—f). Finally, the median (Q Q) exercise
(mean: 23.5%; 95% CI: [ 26.9% to 17.2%] compared duration in DR protocols was 40 min (30 min; 40 min),
to trained populations ( 16.4%; 95% CI: [ 19.5% to 30 min (30 min; 45 min), 40 min (30 min; 46.25 min),
—12.3%]). In addition, the recovery of isometric MVC force/in studies analysing isometric MVC, CK and DOMS,
torque seems to be faster in trained compared to untraineglspectively (Fig2g—i). Moreover, there was an impor
populations (return to baseline 72 h pestno full recov  tant proportion of intermittent protocols in untrained
ery 96 h post, respectively). The peak of DOMS is identicompared to trained populations (48.0% vs. 21.1% on
ed 48 h after DR and seems to be of similar magnitudeverage, respectively), likely to facilitate the completion
between populations (49.0 mm; 95% CI: [42.0-58.0 mmf DR exercises in people not accustomed to eccentric
and 53.7 mm; 95% CI: [45.3—-67.50 mm] in untrained andnuscle actions. The results also highlight important dis-
trained participants, respectively). Finally, the peak increaserepancies between studies in the assessment of DOMS
in blood CK is identi ed 24 h post DR in similar propor (i.e. methods of evaluation, muscles and/or muscle groups
tion between populations 346.5%; 95% CI: [£64.7% investigated, type of scale used) limiting the amount of
to +495.5%] and + 370.7%; 95% CI: [+ 173.6% to + 559.1%Hata presented in Figsc hnd 2, f, i. We can also notice
in untrained and trained participants, respectively). Howa large variability in blood CK elevation in response to
ever, it is possible that the leakage into the bloodstream BR among studies in untrained and trained populations.
less pronounced 72 h and 96 h post DR in trained compar&ex, age, genotype, menstrual cycle, familiarisation with
with untrained populations. DR and DR characteristics could explain this variability in

Endurance training seems to limit the occurrence oflood CK response among studies. While blood CK eleva
muscle damage following DR [35]. Physical training tion is considered a reliable and indirect marker of EIMD,
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Fig. 2 Relationships between peak changes in indirect markers dhite and black circles refer to original data from untrained (i.e.
exercise-induced muscle damage (i.e. isometric maximal volurhealthy and/or recreationally active) and trained populations (i.e.
tary contraction, MVC; blood (plasma and serum) creatine kinase, >54 60 ml min kg® and were involved in endurance-based
CK; and delayed onset muscle soreness, DOMS) and downhill rumctivities at least 3 times/week), respectively. In each panel, the grey
ning (DR) characteristics (i.e. slope (a—c), running speed (d—f) andhape highlights the slope, running speed or exercise duration used in
exercise duration (g—i)]. All data presented and DR characteristiadhe majority of studies (ranging between the 25th and 75th percen-
were extracted from original articles. Peak MVC force/torque dectile). In the cases where data were not fully presented in the manu-
rement was reported immediately post-DR. Peak changes in blosdript, data were extracted from original gures using ImageJ soft-
CK and DOMS were reported between 24-h post and 48-h post DRare (ImageJ V.1.45 s, National Institute of Health, MD, USA)

comparing the extent of EIMD between studies using this Manipulating DR characteristics, independently or not,
marker seems impossible due its variable nature betweemay lead to varied extents of EIMD. For example, increas-
conditions and individuals. ing the slope by 7.0% in combination with a higher speed
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(+4.5 km h') induced a greater reduction in MVC torque 4 Adaptation Strategies to Downbhill

and blood CK elevation following a 45 min DR [38]. Never  Running

theless, knowing the DR characteristics that have been used

the most in scienti ¢ studies so far may help orientate futur@s discussed in Sects.ahd 3of this review, the occur
protocols using DR models. Speci cally, from the analysisrence of EIMD following DR may be deleterious to run-
presented in Fig, where isometric MVC, blood CK and ning performance and subsequent recovery. The search for
DOMS were investigated in response to DR, it becomegdaptation strategies to DR, i.e. strategies to better tolerate
clear that high running speeds¥% km h' ), steeper slopes repeated eccentric muscle actions, is, therefore, warranted.
(> 15%) and longer exercise durations6(>min) remain  Applications extend from recreational to competitive sport
to be investigated. Future studies should also aim to isolagigvolving DR, such as trail and road running. To date, the
the di erent characteristics of DR to understand whethefocus has been on either pre-exercise strategies designed to
one or a combination of them might induce more EIMDaccustom the athlete to the demanding nature of DR, or in-

than others. situ strategies to reduce the occurrence of EIMD (Table
and Fig.3). Pre-exercise strategies (i.e. preconditioning,

3.2 Other Factors Potentially In uencing Muscle DR training) involve a rst exposure to eccentric muscle
Damage Following Downhill Running actions prior to DR. In-situ strategies mainly consist in

wearing innovative running apparels (i.e. compression gar
Few studies have investigated the in uence of sex on indiments, speci ¢ footwear) or voluntarily changing one’s
rect markers of muscle damage following DR [60,147,  running pattern during DR.
168, 191]. Following a 30 min DR (slope: 20%; speed:
10.0 km h'), no di erences were observed in MVC torque
loss and no alterations in the central component of neurd-1 Pre-exercise Adaptation Strategies
muscular fatigue were observed between females and males
[10]. Although the magnitude of absolute (compared to baseé:1.1 Prior Exposure to Downhill Running
line value) blood CK elevation is generally similar between
males and females following DR [14158], Oosthuyse etal. Performing two bouts of DR separated by several days
[168] reported a faster return to baseline in females congr weeks is well-known to reduce or attenuate markers
pared to males. It was suggested that an elevated oestroggimuscle damage after the second bout [198]. This
level could confer a protective e ect against EIMD [148] protective mechanism is termed as ‘repeated bout e ect’
and/or may reduce the secondary phase of EIMD caused @¥BE) [57,194,195]. Several mechanisms were identi-
local in ammation [161]. Carter et al. [141] also reported ed to be likely involved in the RBE, including neural
lower plasma CK elevation in link with higher oestrogenadaptations (e.g.-motoneuron excitability, shift in motor
contents after 30-min DR (slope: 10%; intensity: 60%unit recruitment), adaptations of the muscle—tendon com-
). In contrast, although blood CK and DOMS eleva-plex (e.g. reduced fascicle elongation, increased tendon
tions generally occur concomitantly in males, this does najompliance), increased sensitivity to in ammation and
seem to be the case in females. The DOMS response-folloishproved muscle extracellular matrix remodelling [190].
ing DR was delayed in females and may be in uenced bByrnes et al. [193] reported smaller increases in plasma
the menstrual phase (with a greater recovery rate during tlgX, plasma myoglobin and DOMS up to 48 h after a sec-
mid-luteal phase) [168], though this remains to be con rmeénd DR bout when two 30 min bouts (slope: 10%; inten-
with additional studies. sity: 170 beats mih of heart rate recorded on level grade)
Many studies have investigated adaptations to DR igvere separated by 3-, 6- and 9-weeks. Further studies cor
adult populations, but only a limited number have includedoborated these results by reporting a lower leakage and/
adolescents, pre-pubescent children and older populations. a faster clearance of intracellular muscle proteins in the
Some studies did not report di erences in indirect markblood [46, 63, 67, 85, 92, 121, 141, 143, 165, 181, 185,
ers of muscle damage between pre-pubescent children apgver DOMS [63,68,85,92,121,141,143,185,192,196,
adults [191], or between young and older trained triathletes97] and enhanced recovery of MVC force/torque [63]
[180] after DR. Other studies reported trends towards higheifter a second DR bout (Tableand Fig.3b). The RBE is
levels of indirect markers of muscle damage (neutrophigenerally reported in greater proportion through blood CK
counts, plasma CK and DOMS) in young men compared tglevation than DOMS and post-exercise MVC force/torque
older men after DR [8142] but with comparable recovery decrement [190]. Chen et al. [92] also suggested a ben-
kinetics [§. Additional studies are required to better under e cial e ect of a rst DR bout on RE (expressed as
stand the e ect of maturation and/or age on the physiologipreserved up to 72 h post exercise) and stride parameters
cal responses to DR.
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Fig. 3 a Schematic representation of the time course of alterationsnd muscle soreness, respectively. In b, full sphere, indicates a high
following downhill running (DR) and b current scienti ¢ evidence on tendency for a bene cial e ect; half full sphere, indicates a lack of
the bene ts of di erent adaptation strategies to DR (i.e. prior expo-tendency for a bene cial e ect and/or lack of studies for this param-
sure to DR [4663,67,68,85,92,121,141,143,165,181,184,185, eter; empty sphere, indicates no data for this parameter. In b for each
192,193,196, 197], preconditioning strategies [1®1], DR training  strategy, the strength of scienti ¢ evidence is represented with stars
[14, 209, 210, 254], changes in stride pattern [¥%, 68, 218, 219, on a 1-3 scale where 1 meaning little evidence and 3 meaning high
221,220,228,255], the use of lower limb compression garments [15evidence. The level of evidence was determined according to the
236, 237], and the use of specic footwear [2B49, 253, 256]. In abundance of data available and the number of studies reporting the
a and b, orange, blue, red, purple, and green spheres correspondsémne outcome. The illustration of the running man is adapted from
isometric MVC force/torque loss, changes in running economy an@maximmmmum/Adobe Stock

mechanics, ultrastructural alterations, in ammation and oedema,
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(preserved stride length and frequency) recorded after thie lower proportion compared to eccentric precondition
second bout, likely explained by less muscle damage aftarg, although these data are based on studies investigating
the second bout. It can be hypothesized that a lower magdaptations of upper-limb muscles [1290]. Implement-
nitude of EIMD following a second bout of DR may limit ing isometric instead of eccentric-based exercises in train-
the increase in neural input to the muscle (especially dumng programmes could be an interesting strategy for runners
ing the push-o phase of the running cycle) resulting in aiming to bene t from the RBE but with no prior muscle
lower increase in  and consequently lower alterations damage, especially in the lead up to competitions.
in RE. It would be interesting to analyse simultaneously
the electromyographic activity of KE and PF and RE dur4.1.3 Downhill Running Training
ing the completion of two bouts of DR separated by sev
eral days or weeks. Eccentric-biased exercise training is well known to enhance
Prior exposure to DR confers protective e ects againstnaximal strength production [20202]. In endurance run-
EIMD that are limited in time. Byrnes et all93 showed ners, resistance training has been proposed as a strategy to
that the RBE procured by a prior 30 min DR disappeareiinprove running economy [20304]. Concurrent plyomet-
after 9 weeks with no eccentric muscle actions between thiie and endurance training for several weeks (8—12 weeks)
rst and second bout. The magnitude of the RBE wouldmproved RE (expressed as ;+4 to+8% recorded on
mainly depend on the level of exposition to EIMD, with thelevel grade) [205208]. Thus, due to their eccentric-biased
most EIMD leading to the highest RBE [19®8]. Within  muscle action modality, repeated DR sessions may also stim-
this context, implementing speci ¢ DR sessions in the trainulate muscle growth factors, promote adaptations to the neu-
ing program of runners could be recommended to benetal system, muscle—-tendon complex and running biomechan
from the protective e ects of the RBE and adapt well to thecs, and could lead to improvements in RE. Toyomura et al.
next DR session or to better tolerate DR sections in o -roafl209] argued in favour of DR training to improve running

or road races. performance on level grade. The authors suggested that DR
training could improve the e ectiveness of the stretch—short-
4.1.2 Preconditioning Strategies ening cycle (paramount for level running performance;

[128]) by accentuating the eccentric work (impact and stance

Performing an isolated strenuous exercise within days prigghase) involved, which may consequently enhance RE on at
to a DR session, termed as ‘preconditioning exercise’ magections. Further studies are required to verify if DR training
also confer a form of RBE [181]. Eston et al. [16] inves- may lead to a better RE on negative slopes.
tigated the e ects of repeated isolated KE eccentric muscle In addition, DOMS recorded after a 45-min DR bout was
actions (100 continuous voluntary eccentric muscle actiorlswer following a short DR training ( ve training sessions
at low speed: 0.58 rad'9 performed 14 days prior to a in 1 week; duration: 5-15 min; slope: 10%; intensity: 80%
40 min DR bout (% 8 min interspersed with 2-min rest; of running speed associated with recorded on level
slope: 10%;intensity: 80% maximal heart rate). Comparedyrade, s , With % s corresponding to running
to the control group, the reduction in maximal isokineticspeed associated to a percentage of ) compared to a
peak torque (concentric and eccentric at 2.82 fached  non-trained control group [14]. In the same study, a longer
0.58 rad ¢ ) was less pronounced at lower eccentric andraining period (ten training sessions in 2 weeks vs. ve
concentric muscle action speeds ( 22 and 19% immedi-training sessions in 1 week) conferred a greater bene cial
ately post-DR, respectively), accompanied by a lower eleva ect on DOMS after a 45-min DR compared to the control
tion in plasma CK ( 79% 48-h post-DR) and an increasegroup. An improvement in maximal isometric and isoki-
in muscle tenderness ( 52% 48 h post-DR) up to 7 daysetic (concentric and eccentric) torqued(to+ 24%) was
post-DR. also recorded after a 5-week DR training in physically active

A short isometric preconditioning exercise (10 MVCs atyoung males (three sessions per week; duration: 5-20 min;
long muscle-length performed 2 days prior DR) could alsslope: 10%) [209]. In contrast, the same authors did not
confer RBE [81]. The authors reported bene cial e ects ofreport any e ect of DR training on , funning speed
isometric preconditioning on MVC torque recovery (returnat and RE (expressed as energy cost) in physically
to baseline 72-h post in the preconditioning groupov&ull ~ young men. This result was supported by Shaw et al. [210],
recovery 96-h postin the control group) and DOMS ( 25%who reported no change in RE (expressed as energy cost)
48-h post in the preconditioning group asntrol group). and stride parameters in already well-trained runners taking
However, no bene cial e ects of isometric preconditioning part in an 8-week DR training program (with two DR ses-
were observed on RE (expressed as), counter movement sions per week added to their habitual training; duration:
jump height and plasma CK [81]. Isometric precondition-15-45 min; slope: 5%; speed: from 90 to 110% speed
ing exercise at long muscle length could confer RBE, buat lactate threshold). It can be hypothesized that the initial
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training level may lower the e ectiveness of DR training with a faster recovery of muscle function within days follow
on RE responses during level running and/or DR. In thigg exercise. Interestingly, the authors also reported a greater
regard, Breiner et al. [211] showed that the most economRBE conferred by a rst bout of DR with the overstride
cal runners in level running were also the most economicatrategy, likely caused by more EIMD 20 to+ 40 mm
in uphill and downhill slopes, reinforcing the importancefor DOMS measured on a visual analogue scale immedi-
of running experience in the RE responses to DR trainingitely post- and 24-h post exercise, respectively) compared
It is well-established that at least a single bout of DR cato understride and preferred stride strategies. In contrast,
confer a protective mechanism against EIMD. Although th&ston et al.¢7] observed no di erence in plasma CK, MVC
literature is scarce on the load-response to DR training, ibrce and muscle tenderness after a 40-min intermittent DR
seems that a greater training volume could confer a great@x 8-min; slope: 12%; speed: 11.3 km* in untrained
protective e ect against EIMD [14]. Accordingly, DR train- participants, regardless of the foot stride manipulation
ing could be incorporated in the training regime of o -roadtested. Regarding the impact of foot stride manipulation on
and road runners, in an attempt to improve tolerance to DRynning performance, Sheehan et al. [220] reported that foot
and possibly enhance running performance in races. Recesttide manipulation can a ect RE (expressed as energy cost)
data tend to support these recommendations showing thaiiring DR (slope: 10.5%; speed: 10.8 km'h with a
maximal strength and lower-limb musculotendinous sti nesdower energy cost reported with a preferred stride frequency
as well s are strong predictors of DR performance in(PSF) compared to understride ( 12% for 85% PSF) and
trail runners used to DR [212]. These results strengthen tlowwerstride ( 6% for 115% PSF). Similar results, albeit not
rationale for including speci c DR sessions in the athlete’signi cant, were reported by Snyder and Farley [32] when
training regime. In addition, DR training may improve thePSF was compared to understride ( 17.4% vs. 85% PSF)
e ectiveness of the stretch—shortening cycle on level gradand overstride ( 16.2% vs. 115% PSF) during DR at shal-
[128]. On another hand, caution must be taken, and a prilow negative slope and low running speed ( 5.2%; speed:
ciple of progressivity must be applied when implementing’.2 km h' ). Recently, Vincent et al. [221] corroborated pre-
DR sessions into a runner’s training program to avoid makious results by showing that slight changes in PSb%}
adaptation and injuries. The greater negative net joint worturing DR had no detrimental e ect on the energy cost
accompanied by larger extension moments and negative joiot running. In addition, the choice of stride length a ects
power [34] reported in DR might require longer recoverythe energy absorption and impact attenuation characteris
times post training sessions, especially at the beginning tts of lower extremity joints during DR [218]. More pre-
the implementation. Further studies should aim to investiisely, the authors reported that shortening step length by
gate the load-response to DR training to provide practicdl0% (i.e. using an overstride strategy) reduced knee joint
guidance for runners. From a scienti ¢ standpoint, trainingat a slope corresponding to 8.8% and 17.6%) and hip
data suggest that implementing more than one familiaris@&nergy absorption (at a slope corresponding to 8.8%) and
tion session to DR is crucial in experimental cross-over stugnhanced impact attenuation. Such a strategy may be applied
ies (e.g. [15213]) using the DR model to investigate in-situto reduce EIMD and maintain running performance [218].
and recovery strategies, so that the RBE can be o set. It is worth mentioning that, on level grade, novice runners
ran with a PSF that was about 8% lower than their optimal

4.2 In-situ Adaptation Strategies stride frequency (established from polynomial equations
with stride frequency, and HR) whereas the PSF of
4.2.1 Optimisation of Stride and Foot Strike Pattern experienced and trained runners was signi cantly closer to

their optimal one (~3%) [222]. Taken together, these data
The manipulation of foot stride (i.e. length and frequencysuggest that during DR: (1) metabolic cost, energy absorp-
and foot strike pattern (i.e. rear-, mid- and fore-foot) canion and impact attenuation depend on the stride pattern; (2)
in uence the mechanical strain applied to lower limb mus-adopting a stride pattern close to PSF may be an e ective
cles during running [214217]. Accordingly, manipulating strategy to optimize RE. On another hand, the bene ts of
foot stride frequency [218] and foot strike pattern [219]increasing stride frequency on energy absorption and impact
during DR could reduce EIMD including neuromuscularattenuation may occur at the expense of RE. Additional stud-
fatigue. Following an intermittent 45-min treadmill DR ies are necessary to clarify the e ects of stride manipula-
(9% 5-min; slope: 15%; speed: 10.5 km'f), Rowlands tions on RE and subsequent EIMD during DR, while also
et al. [68] reported lower MVC torque decrements post-DRaking into account di erent training levels.
using an understride strategy ( 8.8% MVC torque; 92% pre- By in uencing muscle-length and muscle activity during
ferred stride length) compared with an overstride ( 14.7%the ground-contact phase, foot strike pattern could also in u-
MVC torque; 108% preferred stride length) or preferreagnce the occurrence of EIMD. Depending on the portion of
stride strategy ( 15.5% MVC torque). This was associatedhe foot that initially hits the ground [223], three main foot
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strike patterns employed by runners have been identi edR [15,236,237]. Ehrstrom et al. [15] showed that wear
rearfoot (heel contacts rst), midfoot (metatarsal heads coring high-pressure compression garments (15-20 mmHg)
tact rst accompanied by heel contact) and forefoot (metaduring 40-min treadmill DR (slope: 15%; intensity: 55%
tarsal heads contact rst without heel contact). The forefoot ) likely presented bene ts for reducing alterations
pattern is characterized by greater plantar and knee exioin the peripheral and central components of neuromuscular
at initial contact [224226]. The negative work (i.e. the work fatigue (for KE muscles) immediately after DR, in well-
done to decelerate the body’s centre of mass with respectttained trail runners. The bene cial e ects of CGs may be
the environment) has been shown to be lower at the knesplained by an attenuation of soft-tissue vibrations which
and greater at the ankle in forefoot compared to rearfoanight improve muscle function [238], accompanied by
strike [227]. In line with these observations, Giandolini et allower muscle activity during exercise [1539]. Ehrstrém
[219] investigated the e ects of foot strike pattern on musclet al. [15] suggested that wearing CGs may exert ‘dynamic
activity and muscle fatigue following a 6.5 km o -road DR immobilization’, reducing soft-tissue oscillation and improv
(average slope: 16.8%) in well-trained trail runners. Ining joint stability, and in turn, enhancing neural input [240,
this study, forefoot strike was associated with higher activ241]. Through a histological and immunohistochemical
ity of the gastrocnemius lateralis and lower activity of theanalysis of muscle biopsy samples of KE muscles, Valle
vastus lateralis and tibialis anterior during DR. It was alsoet al. [237] reported less muscle bre injuries ( 26.7% on
positively correlated with higher decrements in the periphaverage) after 40-min DR (slope: 10%) for the compressed
eral fatigue components (i.e. twitch and 10 to 100 Hz ratibteg compared to the control leg in amateur soccer players.
decrements) compared to rearfoot strike [219], which maldowever, since soccer players were not accustomed to DR,
potentially accentuate damage in PF muscles. Interestinglyis raises the question of the extent of the protective e ect
runners exhibiting various foot strike patterns (alternatiortonferred by CGs in trained athletes used to running on DR
between forefoot, midfoot and rearfoot) during DR presections. In addition, CGs might contribute to enhanced
sented lesser peripheral alterations underlying neuromupest-exercise muscle recovery [P39]. A greater mechani-
cular fatigue following the run. Although no ideal foot strike cal protective e ect was also observed during the recovery
pattern seems to exist, Giandolini et al. [219] suggested thperiod in KE compared to PF muscles only when athletes
a high variability in foot strike pattern (based on regreswore CGs during DR. This suggests a bene cial mechanical
sion analysis) may limit neuromuscular fatigue during DRsupport particularly for the largest muscles recruited in DR
However, when this strategy (i.e. voluntarily alternating foof 15]. In summary, these few data suggest that wearing CGs
strike patterns every 30 s) was applied in DR sections overcauld be a relevant strategy to limit EIMD during specic
2.5-h graded treadmill run, no bene t was reported in terms -road and/or road races involving notable DR sections.
of neuromuscular alterations compared to the control grouRecreational runners and masters athlete®(years) more
(i.e. no switch pattern over DR sections), though no markerone to EIMD may also bene t the most from CGs to help
of EIMD was recorded in this study [228]. It is possiblethem to stabilise their muscle mass during DR. Wearing CGs
that (1) the bene cial e ect of the variability in foot strike could also facilitate adherence to training by limiting the
pattern during DR sections was o set by the extent of neurisk of muscle—tendon unit injuries thanks to a reduction
romuscular fatigue during the uphill and level sections (botin impact shock accelerations during long duration running
performed with natural foot strike for 60 min and 20 minsessions [1R242].
in total, respectively), (2) a longer training/familiarisation
period is required to bene t the most from this strategy. Im.2.3 The Use of Speci ¢ Running Footwear
the eld, we can assume that the best runners spontaneously
adapt their running pattern, technique and propulsive funéhe selection of appropriate running footwear has become
tion to the varied characteristics of the terrain, which woulén essential requirement for distance running [243]. Recent
in uence the neuromuscular, energetic and biomechanicaheta-analyses and systematic reviews showed that footwear
demands, thus limiting direct comparisons with laboratorgharacteristics (i.e. shoe mass, cushioning, motion control,
studies. midsole viscoelasticity, comfort, longitudinal bending sti -
ness, drop height) may reduce the risk of injury [24¥6}
4.2.2 The Use of Lower Limb Compression Garments and improve RE [247248] on level grade. Minimalist shoes
(i.e. lighter mass, greater sole exibility, lower drop height,
Although wearing lower limb compression garments (CGspmaller heel elevation) have been shown to induce bene cial
after exercise has been shown to facilitate the recovery prbiomechanical adjustments (e.g. accentuated mid-forefoot
cess [229231], there is currently no consensus regardingtride pattern, knee and ankle range of motion changes)
their use during exercise [1832-235]. To date, only a few during level running compared to traditional shoes [246,
studies have investigated the impact of wearing CGs durirgd9. A lower ( 1to 4.5%) was reported during
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level running at a set running speed with minimalist shoeand speci cally that being used to train on DR sections, can
compared to traditional shoes [12E0-252]. Similar RE ~ also greatly in uence the magnitude of EIMD and must be
(measured as cost of running) improvements with minimafconsidered in future studies. Other factors including age and
ist shoes were reported during treadmill graded runningex might in uence the response to DR, though evidence is
(slope+ 8% to 8%; speed: 10 km h) [28], and from a lacking. Moreover, our analysis highlights the large vari
speci ¢ RE (measured as cost of running) protocol ( at ancety of protocols using the DR model, which prohibits rm
uphill treadmill evaluations) completed before a short traifonclusions about the factors most responsible for muscle
running session (18.4 km with an alternation of uphill and¢lamage and fatigue in DR. In this regard, there is a need for
downhill sections) [111]. Although the metabolic bene t of further high-quality research using a consistent approach in
wearing minimalist shoes is evident in the non-fatigued corihe assessment of muscle damage.
dition, additional investigations are needed to verify whether The nal aim of this review was to gather scienti ¢ evi-
these bene ts can be preserved with fatigue in trained ar@dence on strategies implemented in the eld to limit EIMD
experienced minimalist runners. and thus better adapt to DR. We identi ed two types of strat-
Hardin and Hamill [149] investigated the e ects of spe-€gies; (1) pre-exercise strategies that mainly consist of prior
ci ¢ footwear features (soft-, mid-, and hard-midsole)-dur €xposure to DR; (2) in-situ strategies that involve the use of
ing DR. Following a 30-min treadmill DR session (slope:SPeci ¢ sportswear (lower limb compression garments and
12%; speed: 12.2 km R), no di erence was reported running shoes), and/or voluntary modi cations in stride and
between midsole conditions on leg shock and EIMD. foot strike patterns. Current scienti ¢ evidence shows that
In parallel, additional cushioning provided by maximalistprior exposure to DR is the most e ective strategy to limit
shoes has been claimed by manufacturers to provide shdéle magnitude of EIMD as a result of the so called “repeated
absorption during running, potentially reducing the impacbout e ect”. Amongst in-situ strategies, CGs present the
loading and the risk of injury. However, wearing maximalistmost potential but additional studies are required to con rm
shoes might not be capable of reducing the impact loadhese ndings and understand the underlying mechanisms.
ing on a level surface and might even increase the exterrfanally, despite a growing interest in the development of
impact loading during short DR treadmill sessions [253]. innovative running shoes, current data, albeit limited, do not
In summary, current scienti ¢ evidence suggests that rurshow any in uence on the adaptation to DR.
ning footwear is the least e ective in-situ strategy to limit
the physiological alterations induced by DR. So far, thé€clarations
“metabolic saving” conferred by minimalist shoes has only
been recorded in at running and on non-fatigued muscle;unding This review was not supported by any research funding.
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5 Conclusion relevant to the content of this review.

Downhill running (DR) is a whole-body exercise characterAvailability of data and materialot applicable to this manuscript.
ised by a high proportlon of eccentric-biased mus_cle ac_t|or]:5thiCS approvaFor this type of study,
well known to induce muscle damage (EIMD) including

neuromuscular fatigue, and ensuing alterations in exercigeithor contributionsAll authors contributed equally to this article.
performance. These physiological alterations generally

persist for severgl days after exercise with a pgak recordeflen Accesdhis article is licensed under a Creative Commons Attri-
between immediately post and 96-h post exercise, depenislition 4.0 International License, which permits use, sharing, adapta-
ing on the variable that is monitored. Our review showgon, distribution and reproduction in any medium or format, as long

that in the majority of studies conducted so far, EIMD wads You give appropriate credit to the original author(s) and the source,
' rovide a link to the Creative Commons licence, and indicate if changes

assessed through 'Somet”cl maximal VOIun_tary Contral%ere made. The images or other third party material in this article are
tion, blood CK and DOMS, with DR characteristics (slopejncluded in the article’s Creative Commons licence, unless indicated
exercise duration, and running Speed) acting as the magtherwise in a credit line to the material. If material is not included in

in uencing factors. In previous studies, the medigh;( the article’s Creative Commons licence and your intended use is not
) ' ! ermitted by statutory regulation or exceeds the permitted use, you will

Qy) slope, exercise d_uration, _a”d runr_1ing speed were 120/rp‘?eed to obtain permission directly from the copyright holder. To view a
( 15%; 10%), 40 min (30 min; 45 min) and 11.3kmh  copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
(9.8 km h'; 12.9 km h'), respectively. The training level,

formal consent is not required.
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