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Abstract—Observability in bearings-only target analysis 

(BOTMA) is studied when the target is in constant-velocity 

motion and the observer maneuvers gently (a constant turn 

motion or a constant acceleration motion). During our study, we 

proved that the rendezvous routes of the observer and the target 

play a key role in this analysis. We establish necessary and 

sufficient conditions of observability and we identify the virtual 

(or ghost) targets giving the same bearings when the system is not 

observable. 

 

 
Index Terms— Target motion analysis, tracking, bearings-

only, observability, constant turn motion, constant acceleration 

motion, sonar, radar, electronic support measurement. 

 

I. INTRODUCTION  

 

T is well known that in bearings-only target motion 

analysis (BOTMA), under the classic assumption - the 

target is in constant velocity (CV) motion -, the observer 

must maneuver in order to render the trajectory of the target 

observable. Unfortunately, some maneuvers were proven to be 

ineffective, that is the trajectory of the target is still 

unobservable, although the maneuvers of the observer [6], [8], 

[9], [10], [2]. Because of their complex and non-intuitive 

mathematical expressions ([6] [10]), most of them seem 

difficult to be done in practice (a boat or a submarine cannot 

follow strictly a mathematical curve). Therefore, we can 

expect that simple maneuvers such as the constant turn (CT) 

motion or the constant acceleration (CA) motion are not 

ineffective maneuvers. For example, some authors considered 

in the past that a CT motion guaranteed implicitly 

observability (see [1] [4]). It turns out that observability has 

not been studied for these simple maneuvers. In this paper, we 

goal to analyze observability in BOTMA, when the observer is  

in CT motion, then we extend this analysis to constant 

acceleration (CA) motion, which is still a maneuver easy to 

do. 

The paper is organized in five main sections: 

In Section II, the notations are given and the observability 

problem posed. Section III is devoted to the types of kinematic  

we will study or encounter in this paper. We give in section IV 

two general results of  BOTMA. The case of an observer in 

CT motion is studied in Section V. Finally, Section VI 

presents some results when the observer is in CA motion. 

 

The conclusion ends this paper. 

 This paper is linked with [7], in which we face the same 

problem, when the measurements are range. 

 

II. PROBLEM STATEMENT AND NOTATIONS 

A. Definitions and notations 

Let a target (T) and an observer (O) moving in the same plane, 

given a Cartesian system. The target is in CV motion, but the 

observer maneuvers (that is, its velocity is not the same all 

along the scenario). The observation starts at time 0t  and 

finishes at time 
fTt  . At time t,  the position and velocity of 

the observer are respectively    T)]()([ tytxtP OOO   and 

 
  T)]()([ tytx

dt

tdP
tV OO

O

O
 . For the target, the notations are 

the same, except the subscript:   T)]()([ tytxtP TTT  , 

  T][ TT
T

T yx
dt

tdP
V  . In short, the respective motions of the 

observer and of the target are given by the vectors 

      TtytxtytxtX OOOOO
)()(  and 

   TTTTTT yxtytxtX )()( .  

It is also convenient to define the relative motion of the target 

w.r.t the observer:       T)]()([ tytxtPtPtP OTOTOTOT  ,  

 
  T)]()([ tytx

dt

tdP
tV OTOT

OT
OT

 . Consequently, we define the 

vector           TtytxtytxtXtXtX OTOTOTOTOTOT
)()( . In 

the sequel,  0TX  will be denoted as 
TX , which defines the 

target’s trajectory, since     TTT VtPtP  0 . This vector will 

be named state vector. Similarly, )0(OTX  will be denoted 

simply 
OTX . We implicitly assume that  



 0tPOT
, in  fT0 . 

Vectors U  and W  are said collinear if a non-zero scalar   

exists such that WU  . The angles are clockwise-positive. 

Subsequently, we will use the symbol   to designate angles: 

for any pair of vectors U  and W ,  WU,  is the angle defined 

by the couple  WU,  referenced to U . When U  is collinear to 

the northward direction, we will use W only (for the 

bearing or heading). 

The range and the bearing at time t  are given respectively by 
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   tPtr OT  and    tPt OT .  

Subsequently, we will use the following simplified notations: 

 00   ,  00 rr  ,   0OTr Vv  , and  0OTr Vh   for the 

initial bearing, range, relative speed, and heading.  

 

Figure 1 illustrates the notations for a typical scenario. 

 

 
 

Figure 1. Typical scenario of TMA and associated notations 

 

B.  Observability notion 

To emphasize the functional link between  t  and 
OTX , we 

will denote  t  by  OTXt , . 

We recall that the target’s trajectory is declared observable in 

BOTMA if the following statement is true: 

      OTOTf XXXtXtTt  ,,,,0  . Otherwise, 

the trajectory is unobservable: at least, one vector 

 TOGOGOGOGOG yxyxX )0()0( (defining a CV motion) 

different from 
OTX  exists such that 

     fOTOG TtXtXt ,0,,,  . 

The vector 
OOGG XXX   defines the “virtual” trajectory of 

a “ghost-target”, denoted G. For each ghost-target, we define 

similarly       T000 GGG yxP  , T][ GGG yxV  , 

    T)]()([0 tytxVtPtP GGGGG  , and 

   TGGGGG yxtytxtX )()( , with the convention 

 0GG XX  .  

Observability is a necessary (but not sufficient) condition to 

perform successful TMA. Observability analysis is based upon 

ideal situation: noiseless measurements and exactly known 

trajectory. Obviously, in real situation these hypotheses are 

not verified. The philosophy is to say: if in ideal situation 

estimating the trajectory of a target is impossible because of 

the presence of several solutions, in real situation it will be as 

well. 

 

Observability analysis has two goals: 

a) Give a necessary and sufficient condition to have 

unicity of the state vector 
OTX  (that is the trajectory 

of the target is observable), 

b) When this trajectory is unobservable, characterize the 

set of  
OGX . 

III. OBSERVER CINEMATIC MODELS 

In this paper, we are concerned by two models of smooth 

observer motion: (i) the observer travels in an arc of a circle at 

constant speed, (ii)  it has a constant acceleration vector. 

 

A.  CT motion 

The observer travels in an arc of a circle whose center is a 

fixed point 










C

C

C
y

x
P  and radius is 0 . It has a constant 

turn rate 0   and an “initial phase”   relative to north, at 

the beginning of its motion. So, the location of the observer is 

given by   
 
 

















t

t
PtP CO

cos

sin (see Fig. 2). Note that its 

speed is constant. In order to simplify the coming calculation, 

we will assume that 










0

0
CP . 

 
Figure 2. Typical scenario when the observer is traveling 

in an arc of a circle. 

 

B.  CA motion 

The position of the observer at any time t  is 

      
2

00
2t

VtPtP OOO
,  where  Tyx  is the  

acceleration vector. The relative position of the target with 

respect to the observer is 

      
2

00
2t

VtPtP OTOTOT
   (1) 

Without loss of generality, we will assume that 0x  and 

0y . Indeed, a suitable rotation (depending on the vector 

 ) of the entire scenario allows us to be in this case. This 

assumption will make observability analysis easier. 

 

C.  Rendezvous routes in CA motion 

The observability criteria when the observer is in CA motion 

will be shown to be linked to the rendezvous (or "collision") 

route in Sections VI.  

 

Target 

Observer 

North (y) 

East (x) 

Observer’s 

heading 

Bearing : (t) 

 r(t) 

Target’s heading 
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Definition: the rendezvous route 

The target and the observer are said to be on a rendezvous 

route (RDVR), when they are in the same place at a time 
ct . 

 

Since   0


tPOT
, in  fT0 , 

ct  is not in  fT,0 . Actually, 

these rendezvous instants are purely virtual: before  0t  and 

after 
fT , O and T were and will be free to choose their own 

trajectories. Note that a CA motion is not the pursuit curve 

motion, which has not been yet studied in the TMA 

observability problem.  

 

1) The two types of RDVR 

 

Proposition 1: General properties of RDVR 

If O and T are on an RDVR, then 

- Either  0OTP ,  0OTV  and   are collinear, 

- Or   0OTP  and   are noncollinear, and  0OTV  and   

are noncollinear. 

 

Proof: 

O and T collide at ct  if and only if  

   

   
















)3(000

)2(0
2

1
00 2

OTcOT

xcOTcOT

yty

txtx



 
 

If   00 OTy , then (3) implies that   00 OTy . The vectors 

 0OTP ,  0OTV  and   are collinear. 

 

Else,  
 

0
0

0 
c

OT
OT

t

y
y . In other words,  0OTP  and   are 

noncollinear, and  0OTV  and   are noncollinear. 

 

QED. 

 

Definition: The two types of RDVR 

The RDVRs are called rendezvous routes of type I (RDVR-I), 

when  0OTP ,  0OTV , and   are collinear. When  0OTP  and 

  are noncollinear, and  0OTV  and   are noncollinear as 

well, the RDVRs are called rendezvous routes of type II 

(RDVR-II). 

 

Note that for the RDVR-II,  0OTP  and  0OTV  can be 

collinear. 

 

The converse of Proposition 1 is given in the following two 

propositions. 

 

Proposition 2: Condition of RDVR-I 

Assume that  0OTP ,  0OTV  and   are collinear; that is, 

  0OTP  (with 0 ) and    0OTV . O and T are on an 

RDVR if and only if   22  . 

 

Proof: 

O and T are on an RDVR, if and only if  

    0
2

1
00 2  xcOTcOT txtx   (we do not have any equation 

with the y-component since 0y ). This equality is 

equivalent to 

0
2

1 2 







 xcc tt   or 0222   cc tt . 

Hence, O and T are on an RDVR if and only if the equation 

0222   tt  has one or two real roots (one of them is   

ct ), that is, if and only if the discriminant  22   is 

positive.  

 

QED. 

 

Remark:  in this case, the bearings are piecewise equal to 
2


 , 

and Proposition 2 remains valid up to a rotation, that is, for 

  constantt  up to 
ct . Note also that two rendezvous 

instants may exist (depending on  ). In Fig. 3, an example of 

such a situation is given: The target starts at  T04000  (m) 

with a velocity of  T220 (m/s); the observer starts at 

 T00  (m) with a velocity of  T210 (m/s) and its 

acceleration vector is    T00416.0       2m/s  . 

 
Figure 3. Example of case where the target and the 

observer have two RDVs. 
 

 

 

Proposition 3: Condition of RDVR-II. 

Assume that  0OTP  and   are noncollinear, and  0OTV  and 

  are noncollinear as well. 

O and T are on a RDVR if and only if 

 
 

        0000
0

0
2

2 OTOTOTOT

OT

OT
x yxyx

y

y



 . 

 

Proof: 
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Equation (3) implies that  
 0

0

OT

OT
c

y

y
t


 . Reporting this result in 

(2), we get  
 
 

 
 
 

0
0

0

2

1
0

0

0
0

2

2

 x

OT

OT
OT

OT

OT
OT

y

y
x

y

y
x 





. We end up 

with  
 

        0000
0

0
2

2 OTOTOTOT

OT

OT
x yxyx

y

y



 . 

 

QED. 

 

In the following proposition, we give a criterion based on the 

bearings, which allows us to know if we are on an RDVR-II or 

not. 

 

2) Criterion of RDV-II 

From the remark following Proposition 2, when the target and 

the observer are on an RDVR-I, the bearings are constant. In 

this case, the trajectory of the target is not observable in 

BOTMA. Conversely, if the bearings are constant, the two 

vehicles are not necessarily on an RDVR-I. Therefore, finding 

a criterion of RDVR-I is hopeless. It is impossible to decide if 

we are in logic of RDVR-I from bearings only.  

In contrary, we can give a criterion of RDVR-II, based on 

bearings. 

 

Proposition 4:  

O and T are on RDVR-II if and only if   tt 10tan   , with 

01  . 

The respective values of 
0  and 

1  are  
 0

0

OT

OT

y

x ,  and 

       
 0

0000
2

OT

OTOTOTOT

y

xyxy   . 

 

Proof: 

We have to prove that the equivalence 

 
 
 

        0000
0

0
2tan

210 OTOTOTOT

OT

OT
x yxyx

y

y
tt 


 

We have  
   

   00

2

1
00

tan

2

OTOT

xOTOT

yty

txtx

t











 . 

 

If      

      tyty

txtxtt

OTOT

xOTOT

10

2

10

00

2

1
00thentan











  

 

As a consequence,  
 0

0

OT

OT
c

y

y
t


  is a root of 

    xOTOT txtx 2

2

1
00   . We get the equality 

 
 

        0000
0

0
2

2 OTOTOTOT

OT

OT
x yxyx

y

y



 . 

 

Conversely, if  
 

        0000
0

0
2

2 OTOTOTOT

OT

OT
x yxyx

y

y



 , 

then we readily verify that  
 0

0

OT

OT
c

y

y
t


  is a root of 

    xOTOT txtx 2

2

1
00   . Hence, there are two reals 

numbers
0  and 

1  such that 

          tytytxtx OTOTxOTOT 10

2 00
2

1
00    . 

 

QED. 

 

To resume, if the bearings collected by the observer verify 

  tt 10tan   , then if 01  , the observer and the target 

are on an RDVR-II; else, they can be on an RDVR-I or not. 

 

In practice, it is well known by sailors that when the observer 

is itself in CV motion and the bearings are constant, the 

observer and the target can be on a collision route. To avoid a 

collision, the observer must maneuver. However, if it 

accelerates and if the bearing tangent is linear, it may still 

remain on a rendezvous route, and the collision will occur. 

 

IV. TWO GENERAL RESULTS ABOUT OBSERVABILITY IN 

BOTMA 

 

We give hereafter two general results, which will be necessary 

to prove observability when the trajectory of the target is a 

combination of CA and CV motions (see Proposition 11). 

  

Proposition 5: Observability equivalence between two 

observers in BOTMA 

Let there be two observers measuring the same bearings. If the 

target is observable from one, it will be observable from the 

other (or equivalently, if it is unobservable from one, it will be 

unobservable from the other). 

 

Proof: 

We recall that BOTMA has a linear version, whatever the 

trajectory of the ownship. Indeed, the noise-free measurement 

equation  
   
   










 

tyyty

txxtx
t

OTT

OTT





0

0
tan 1  can be transformed 

into the linear equation [3] 

        
         NOO

T

tttttyttx

Xtttttt

,,,sincos

sincossincos

1 







 
or, in short,   ZXT A , where the k-th line of  A  is 

        kkkkkk tttttt  sincossincos  , and the k-th 

element of Z  is        kkOkkO ttyttx  sincos  ; see [3, 11, 16]. 

The observability is hence brought by the set     Ntt  ,,1  , 

which means that if two observers collect the same set 

    Ntt  ,,1  , if the target is observable from one, it will be 

observable from the second one. In this case, the state vector is 

computed by      ZXT

1
  AA

T . 

 

QED. 

 

Proposition 6: Observability equivalence for time-reversed 
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bearings 

Let there be two observers #1 and #2. Observer #2 measures the 

same bearings as observer #1, but in the inverse temporal order, 

that is 
     kNk ttt  12  , where 

  ki t  is the bearing 

measured at time kt  by observer #i. If the target detected by 

observer #1 is observable, then the target detected by observer 

#2 will be, and the converse. 

 

Proof: 

Let us define the matrix 
  iA  whose k-th line is 

            kikkikkiki tttttt  sincossincos  . Let us 

prove that 
       21 RankRank  AA  . We note that the  k-th 

line of 
  2A  is  

            

            kNkkNkkNkN

kkkkkk

tttttttttt

tttttt





1111

2222

sincossincos

sincossincos



  

 

We construct a third matrix denoted A
~

 by permutation of the 

lines of 
  2A , that is, the first line of A

~
 is the N-th line of 

  2A , the second line of 
  2A  is the (N – 1)-th of 

  2A , 

and so on. In other words, we flip the matrix in the up/down 

direction. Obviously,      2Rank
~

Rank AA  . We note that 

the first two columns of A
~

 are the first two columns of 
  1A . 

The third (resp. fourth) column of A
~

 is Nt  
multiplied by the 

first (resp., second) column of Nt , minus the third (resp., 

fourth) column of 
  1A . Hence,      1Rank

~
Rank AA  . 

Consequently, 
       12 RankRank  AA  . We readily deduce 

that 
             2211 RankRank  AAAA

TT  . 

QED. 

 

Note that these properties cannot be extended for any 

measurements such as frequency measurements, since they are 

not time-reversible.  

V. OBSERVER IN CT MOTION 

The CT motion was defined in Section III A. We propose the 

following result when the noise-free bearings are continuously 

available during  fT,0 . 

 

Proposition 7: Observability in BOTMA for CT motion 

If the observer is traveling along an arc of a circle, then any 

target moving with a constant velocity is observable in 

BOTMA. 

 

Proof: 

Suppose that a ghost (G) moving in CV motion is detected in 

the same bearings as the target for any  fTt ,0 . 

 

The equality      tPtPt OGOT   is equivalent 

to      tPtktP OTOG   for certain   0tk  

            fOTOG TttPtPtktPtP ,0,   

          tPtktPtktP OTG 1  

         
 
 

















t

t
tkVtPtkVtP TTGG

cos

sin
100  

  1 tk . 

 

In other words, no such ghost exists: the trajectory of the 

target is hence observable. 

 

QED. 

 

Note that if the observer’s trajectory contains at least one arc 

of a circle, then the trajectory of any target having a constant 

velocity is observable in BOTMA. 

VI.  OBSERVER IN CA MOTION 

We have now the tools to give conditions observability 

criterion based on bearings only. 

 

Proposition 8:  

Assume that the observer is in CA motion. 

The target’s trajectory is unobservable if and only if 

  tt 10tan   . 

 If 01  , the target and the observer are on a RDVR-II and 

the ghosts are on a RDVR-II with the observer. Their 

trajectories are defined by        00 TG XX , where   is 

a scalar and   is a vector of the null space of the matrix 

   
     

 



























1000

00
2

0

0000

0000

OT
x

OTOTOT

OTOT

y

yxy

xy






. 

If 01  , the trajectories of the ghosts are defined by 

    Ξ 00 TG XX , with  T00 21  Ξ .  

 

Proof: 

We have to identify the solutions of the equation 

   OTXtXt ,,   . Since the implication 

        OTOT XtXtXtXt ,tan,tan,,    holds, 

we concentrate our effort on the equation 

   OTXtXt ,tan,tan   . We define the components of 

X by  Tyxyx  . 

 

Two cases must be studied: 

 

Case (1):   00 OTy  or   00 OTy . 
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   

   00

2
00

2

22

OTOT

xOTOTx

yty

t
xtx

yty

t
xtx





















,  fTt ,0 . 

    

     yty
t

xtx

yty
t

xtx

xOTOT

OTOTx





























2
00

00
2

2

2

,  fTt ,0 . 

 

After reordering the terms of this equation, we get 

   
       

     

 



















0

0
2

0
2

0

0000

00

OT

OT
x

OT
x

OT

OTOTOTOT

OTOT

yy

yxyyyx

xyxyyxyx

xyyx








 

 

We end up with the system  

)( BXM  

 

with 

   
     

 





























1000

00
2

0

0000

0000

OT
x

OTOTOT

OTOT

y

yxy

xy




M

 and 

   

     

  






















0

0
2

00

00

0

OT

OT
x

OTOT

OTOT

y

yyx

yx
B








 

 

We note that the vector 
OTX  is a solution of the above 

equation.  

 

The vector 
OTX  is the unique solution of )(  if and only if 

  0det M , in other words, the trajectory of the target is 

observable. And conversely, the trajectory of the target is not 

observable if and only if   0det M . Consequently, the 

discussion is about  Mdet .  

 

We readily get 

               xOTOTOTOTOTOT yyxyyx 0
2

1
00000det 22  M . 

 

If   0det M , we have to discriminate the subcase where 

  00 OTy  from the subcase   00 OTy . 

 

If   00 OTy , then   00 OTx . The case   00 OTx  means 

that the target and the observer are co-localized at the initial 

time. This does not respect the assumptions given in II A. This 

case is hence discarded.  

 

If   00 OTy , then 

 
 

        0000
0

0
2

2 OTOTOTOT

OT

OT
x yxyx

y

y



 ; that is, the 

observer and the target are on an RDVR-II (cf. Proposition 3). 

Since the acceleration 
x  is not equal to zero,  0OTy  cannot be 

equal to zero. As the consequence, the first two columns of 

M are not collinear. We remark also that the fourth column of 

the matrix M  cannot be simultaneously collinear with another 

one, so the rank of M is equal to 3. 

 

The set of solutions of )(  is the set of the vectors defined by 

 OTOG XX , where   is a scalar and 

 T0321   is a nonzero vector of the null space of 

M .  We verify that  t  has a special form: 

   tt 10

1tan    , with  
 0

0
0

OT

OT

y

x
  and 

       
 0

0000
21

OT

OTOTOTOT

y

xyxy  
 . 

 

Note that 
   

   
t

yty

t
xtx

OGOG

xOGOG

10

2

00

2
00












 is equivalent to 

          00
2

00 10

2

OGOGxOGOG ytyt
t

xtx    . 

 

Hence, at time   
 

 
 0

0

0

0
,

OT

OG

OG

OG
cG

y

y

y

y
t


  (which depends on 

the relative coordinate  0OGy  of the considered ghost), we get 

  0, cGOG tx  and   0, cGOG ty . As a consequence, all the 

ghosts and the observer are on an RDVR-II (but at different 

times of rendezvous). 

 

Case (2):   00 OTy  and   00 OTy ; that is,    0,0 OTOT VP  

and   are collinear. Note that  

O and T are not necessarily on an RDVR-I. 

Then    
2

,,


  OTXtXt   0 yty  ; that is, 

0 yy  . 

The bearing rate is zero and the set of solutions is the line of 

sight of the target: any ghost traveling in this line (the X-axis) 

is detected in the same (constant) bearing 









2

  as the target 

of interest. The target’s trajectory is not observable. 

 

QED. 

 

We end up with an observability criterion based on bearings 

only. 

 

Proposition 9: Observability criterion for CA motion 

Assume that the observer is in CA motion. 

The target’s trajectory is observable if and only if 

  tt 10tan    or equivalently, if and only if O and T are not 

on an RDVR-II and the bearings are not constant. 
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Proposition 10 

The trajectory of the target is not observable if, and only if a 

virtual observer, located at  0OP  at time 0t , in CV motion, 

continuously collects the same bearings as the observer.  

If the bearings are constant, the observer, the target and the 

virtual observer travel in the same line. 

If O and T are on an RDVR-II, its velocity is 

   
 
 






















T

OT

OT
OTO

E

y

y

x
yx

V




0

0
00

. 

Proof: 

We denote in this proof the initial position and the velocity of 

a virtual observer in CV motion by  0EP  and 
EV , respectively. 

If a virtual observer, located at  0OP  at time 0t , in CV 

motion, continuously collecting the same bearings as the 

observer exists, the trajectory of the target is not observable 

from Proposition 5. 

 

Conversely, if the trajectory of the target is not observable, 

then from proposition 9, the bearings are constant or the target 

and the observer are on a RDVR II. 

If the bearings are constant, then     000  OO yy  . The virtual 

observer (in CV motion) such that    00 OE PP   and  0OE VV   

collects the same bearings as O. 

If the target and the observer are on a RDVR II, let us  

construct  a virtual observer E in CV motion: Its initial 

position and velocity are denoted       T000 OOE yxP   and 

 TEEE yxV  . The equality  
 
  












 

ETOT

ETOT

yty

xtx
t





0

0
tan 1  

implies that  
 

t
yty

xtx

ETOT

ETOT
10

0

0
 







 . Consequently 0ETy , 

and 
  1
0


OT

ET

y

x . Since        
 0

0000
21

OT

OTOTOTOT

y

xyxy  
  (see 

Proposition 4), we get     
 
 0

0
00

OT

OT
OTOTET

y

x
yxx   . We end 

up with  
   

 
 






















T

OT

OT
OTO

E

y

y

x
yx

V




0

0
00

. Note that (i) this virtual 

observer is unique (ii)  0OE VV  , otherwise   00 OTy  which 

implies that 0x  from Proposition 3. 

QED. 

 

Recall that this notion of virtual observer was initially  

introduced in [6] for any ineffective maneuver: for  such a 

maneuver, we have  
t

t
t

3

10

1
tan









 . We prove here that 

03   if the ineffective maneuver corresponds to an RDVR-

II. 

 

Hereafter, we propose an example of a scenario where the 

observer has a higher order dynamic than the target and the 

target’s trajectory still remains unobservable. We have chosen 

a scenario with an RDVR-II (hence satisfying Proposition 3):  

   

  )m/s(]46[and,)m(]40003000[0

,)m/s(]210[0,]00[0

TT

TT





TT

OO

VP

VP   

with 0345.0x  m/s2. The duration is 6 minutes. In this 

case,   tt 10tan   , with 4/30   and 0029.01  , 

which verifies Proposition 4. 

Figure 4 depicts the maneuvering observer together with the 

target (thick lines) and four ghosts (thin lines). Moreover, the 

trajectory of the virtual observer E is plotted. Four lines of 

sight are given.  

 

 
Figure 4. Non-observable trajectory in BOTMA, the 

target, some ghosts, and the bearing-equivalent-non-

maneuvering observer. 

 

Extension: Observer in CV and then CA motion and the 

converse:  

 

In practice, an observer decides to maneuver after a phase of 

CV motion. Therefore, it is worth studying observability when 

the trajectory of the observer is composed of a CV motion, 

then of a CA motion. The velocity of the observer at the very 

beginning of the CA motion is equal to the velocity during the 

first leg. 

Of course, observability must be studied when during the CA 

motion the trajectory of the target is not observable. 

The case where the bearings are constant during the CA 

motion can be straightaway discarded since during the first 

leg, the bearings are the same than during the CA motion (and 

are constant). 

Therefore, we will assume that O and T are on a RDVR-II 

during the CA motion, that is    tt 10tan   . 

 

Proposition 11: Observability criterion in BOTMA for CA-

CV and CV-CA motions 
Assume that the observer is in CV motion and then in CA motion 

or the converse. The target’s trajectory is observable in BOTMA 

if the bearings are not constant during the CA motion. 

 

Proof: 

We have only to consider the case where O and T are on an 
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RDVR-II during the CA motion. During this phase, following 

Proposition 10, the observer collects the same bearings as the 

non-maneuvering observer E. Hence, the observer collects the 

bearings acquired by another observer whose trajectory is 

composed of two legs at CV: the first one is defined by  0OV , 

and the second one by 
EV . In short, the observer acquires the 

same bearings as the ones collected by a leg-by-leg 

maneuvering observer. Since the bearings are not constant, the 

target’s trajectory is observable from the virtual observer E (see 

[8]). Proposition 5 completes the proof. 

QED 

Remark: Proposition 6 allows us to extend Proposition 11 when 

the observer is first in CA motion and then in CV motion. 

 

VII. CONCLUSION 

In this paper, observability of a target in constant velocity 

motion from a smoothly maneuvering observer (constant turn 

motion and constant acceleration motion) has been conducted. 

 

When the observer is in CT motion (see for example [1] and 

[4]), observability is always guaranteed. If the displacement of 

the observer contains at least an arc of a circle, this conclusion 

remains valid. 

 

When the observer is in CA motion, observability is 

guaranteed if and only if there is no 
0  and 

1  such that the 

tangent of the bearings at time t is equal to t10   .  

In any other case, that is  the tangent of the bearings at time t 

is equal to t10    for some 
0  and 

1 , its trajectory is not 

observable. This proves that even if the observer kinematic is 

of an order greater than the one of the target, observability is 

not guaranteed (see eq (41) in [6]).  This is not in contradiction 

with [5], whose authors established a necessary (but non-

sufficient) observability condition. We proved that if
1  is non 

null, then the observer and the target are on a rendezvous 

route.  

We characterized the set of ghost-targets, which is 

uncountable. 

 

We extended our analysis when the observer’s trajectory is 

composed of a CA motion followed by a CV motion (and 

inversely): arguing fundamental properties, we proved that the 

target is observable in this case. 
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