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Jean-Michel Portal, Damien Querlioz, and Elisa Vianello*

1. Introduction

In recent years, artificial intelligence has reached significant
milestones with the development of deep neural networks,
but it suffers from a major limitation: its considerable energy
consumption.[1] This limitation is primarily due to the energy

cost of exchanging information between
computation and memory units.[2,3]

Memristors, also called resistive random
access memories (RRAMs) in industrial
laboratories, now provide an opportunity
to increase the energy efficiency of AI dra-
matically. In contrast to the complemen-
tary metal-oxide-semiconductor (CMOS)-
based memories such as static or dynamic
random access memories, which store one
bit per unit cell, they can be programmed
to intermediate states between their low-
est and highest resistance values, allowing
memorizing the synaptic weights of a
neural network in a particularly compact
manner.[4] In addition, using the funda-
mental laws of electric circuits, arrays
of memristors can implement deep
learning’s most basic operation, multiply
and accumulate (MAC): the multiply
operation corresponds to Ohm’s law,
whereas the accumulate operation corre-
sponds to Kirchhoff ’s current law. This
type of “in-memory” computation con-
sumes less power than equivalent digital
implementations[5–9]: the computation is

performed directly within memory, allowing the suppression
of the energy associated with weight movement.[4,10,11]

Moreover, nonvolatility offers an instant on/off feature: mem-
ristor-based systems can perform inference immediately after
being turned on, allowing to cut the power supply entirely as
soon as the system is not used.
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Crossbars of resistive memories, or memristors, provide a road to reduce the
energy consumption of artificial neural networks, by naturally implementing
multiply accumulate operations, their most basic calculations. However, a major
challenge of implementing robust hardware neural networks is the conductance
instability over time of resistive memories, due to the local recombination of
oxygen vacancies. This effect causes resistive memory-based neural networks to
rapidly lose accuracy, an issue that is sometimes overlooked. Herein, this
conductance instability issue is shown, which can be avoided without changing
the material stack of the resistive memory by exploiting an original programming
strategy. This technique relies on program-and-verify loops with appropriately
chosen wait times and ensures that the resistive memories are programmed into
states with stable filaments. To test the strategy, a 32� 32 in-memory computing
system, fabricated in a hybrid complementary metal-oxide-semiconductor
(CMOS)/hafnium oxide technology, is programmed to classify heart arrhythmia
from electrocardiogram. When the resistive memories are programmed con-
ventionally, the system loses accuracy within hours. In contrast, when using this
technique, the system maintains an accuracy of 95% over more than 2 months.
These results highlight the potential of resistive memory for the implementation
of low-power neural networks with long-term stability.
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However, RRAM devices are far from ideal analog memories:
they suffer from conductance instability issues mainly due to the
local random diffusion of oxygen vacancies in and out of the con-
ductive filament.[12–15] The chemical nature of the materials in
the memory stack changes the magnitude of the instability
(see Figure S1, Supporting Information). Resistive memories
based on TaOx and HfAlO,[14,16,17] for example, show a slight
advantage over HfOx, but the conductance instability remains
inevitably present in the tails of the distributions regardless of
the memory stack materials.[14,18] Moreover, there is an experi-
mental interplay between retention and endurance: better
conductance stability is correlated with poorer endurance.[19,20]

Until recently, the conductance instability issue has been rela-
tively overlooked, as industrial developments around RRAMs
have focused on their use as single-level cells, where RRAMs
are used with only two levels meaning zero and one.[21–23] In this
case, conductance instability is not a major concern, as long the
zero and one levels remain well separated, and 10 years retention
can be obtained.[24] In contrast, conductance instability is a major
concern in the analog or multilevel uses envisioned for neural
network implementation. Conductance instability may be over-
looked during the development of a technology when sample
cells are measured, mainly due to insufficient statistics.
Instability occurs at the tails of the conductance distribution
of arrays exceeding several thousands of devices. Conductance
instability varies in magnitude depending on technologies, but
recent works have revealed that it has a major impact on the
medium-term and long-term accuracy of RRAM-based neural
networks. In the study by Xi et al.,[12] a neural network with
HfOx RRAM trained on handwritten digit recognition mixed
national institute of standards and technology (MNIST) loses
7% points in accuracy in only 1 s. Zhao et al.[25] estimate that the
accuracy rate of a neural network programmed on a Al:HfOx

RRAM degrades from 99% to 93% in 23 days at 85 °C. Lin
et al.[26] show a degradation from 98% to only 10% accuracy with
tungsten oxide in 4 days. These results mean that an analog
or multilevel RRAM neural network would need to be reprog-
rammed very regularly to fight this conductance instability.
Alternatively, Lin et al.[26] propose embedding conductance insta-
bility–compensation circuitry, with a very high overhead cost and
still incapable of eliminating accuracy reduction entirely.

In this work, we propose to solve this issue by transforming
the way RRAMs are programmed. We introduce a robust
programming technique for RRAMs that combines a smart
multistep programming methodology with a wait time able to
compensate for short-term conductance instability. We program
an analog neural network on a fabricated hybrid hafnium oxide
RRAM/CMOS fully integrated system using this technique, which
implements in-memory computing. The resulting neural network
maintains accuracy without any degradation over 2 months on a
task of recognition of heart arrhythmia from electrocardiogram
(ECG) recording, demonstrating the potential of properly pro-
grammed RRAM for long-term stable neural network accelerators.

Chalcogenide glass-based phase-change memories (PCMs)
are another technology that has been widely studied for analog
in-memory neural network implementation, due to the possibil-
ity to adjust the conductance of these devices finely.[5] PCMs
suffer from a major conductance drift issue due to structural
relaxation.[27] Current proposals are efforts toward drift-immune

devices using projected architectures[28] or compensation
techniques at the circuit level involving complex and high-energy
consumption overheads.[29,30] Our work suggests that RRAM
might be used for long-termmultilevel synaptic applications with
simpler mitigations than PCM.

The article is organized as follows. We first introduce the
RRAM technology used throughout this work, its conductance
instability characteristics, and our original programming tech-
nique. We then program a complete neural network on a hybrid
CMOS/RRAM in-memory computing system and show that it
maintains accuracy over two months when RRAMs have been
programmed with our programming technique.

2. Overcoming Conductance Instability with a
Dedicated Programming Strategy

Our work relies on a resistive RAM technology integrated into
the back end of line (BEOL) of a 130 nm foundry CMOS process.
A titanium nitride bottom electrode is defined on the top of the
fourth metal level (copper) of the CMOS process. A chemical
mechanical polishing touch is performed, and an HfO2/Ti/
TiN stack is deposited where the HfO2 and the Ti layers are 5
and 10 nm thick, respectively (see Figure 1a and Experimental
Section). The RRAM cells are initially in a low-conductance state
(LCS) (pristine state). An oxygen-poor filamentary path is first
formed electrically by soft electrical breakdown.[31] The device
can then be switched between low and high conductance by
field-induced migration and diffusion of the oxygen vacancies
in the conductive filament. A positive voltage applied to the
top electrode (SET operation) causes oxygen vacancies’migration
toward the bottom electrode, inducing the transition to a high-
conductance state (HCS). The conductive filament can then be
disrupted with the application of a negative voltage pulse
(RESET operation), inducing oxygen vacancies migration back
to the top electrode, thus flipping the device into an LCS
(see Figure 1c).

During the forming and SET operations, the current is limited
by an n-channel metal-oxide-semiconductor field-effect transistor
(nMOSFET) selector device (Figure 1b) to avoid the
breakdown of the device. This current compliance determines
the conductance of the HCS at the end of the SET process,
and it can be adjusted by choosing the gate voltage on the
nMOSFET. Therefore, it is possible to use RRAM as a multilevel
cell, by modulating the value of the HCS. Unfortunately, RRAM
is prone to a high level of conductance variability, meaning that
the HCS obtained after an SET operation presents a relatively
broad statistical distribution: the HCS measured more than
16 384 devices follows a normally distributed device-to-device
conductance probability density (Figure 1d).

To program RRAMs into well-defined resistance states, a con-
ventional technique is to rely on program-and-verify strategies:
an RRAM cell is programmed multiple times, until its resistance
reaches its targeted value. Figure 2a shows a standard program-
and-verify methodology.[32] The different conductance levels are
chosen in an optimized manner with regard to the properties of
RRAM (we take into account the increase in conductance vari-
ability as its average value increases to allocate conductance
ranges instead of dividing them equally, see Experimental
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Section). Our experimental results show that this program-and-
verify strategy is indeed efficient. Figure 2b illustrates the cumu-
lative distribution of the conductance of 16 384 resistive memory
cells in 8 and 15 different conductance states using the standard
iterative programming algorithm shown in Figure 2a. Initially,
the conductance states are separated (black curve), suggesting
the possibility of using RRAM for multilevel storage.
However, this strategy only works short term: many RRAM cells
have conductance states that are not stable over time, meaning
that they have been programmed in a state with an unstable fila-
ment. This effect is shown in Figure 2b: 60 s after programming,
conductance instability over time causes the initial distributions
to spread toward both higher and lower values. Regarding the
lowest conductance level (the most prone to conductance insta-
bility), after 60 s, only 85% of the programmed devices remain in
the target conductance range for eight HCS levels and only 70%
with 15 HCS levels.

Figure 3 shows the cumulative distribution of the conductance
of 425 resistive memory cells in eight different conductance

Figure 1. a) Scanning electron microscope (SEM) crosssection of the TiN/HfO2/Ti/TiN resistive memory integrated into the BEOL of a CMOS 130 nm tech-
nology node. b) 1T1R circuit schematic. c) Oxygen vacancy-based working principle of the pristine, LCS, and HCS. d) Probability density of the conductance
variability measured on 16 384 devices under six different SET programming currents without iterative programming fit with a normal distribution (blue line).

Figure 2. a) Standard iterative programming algorithm.[32] b) Conductance cumulative probability distribution (black, t¼ 0 s and blue, t¼ 60 s) for 8 and
15 distinct conductance levels programmed using the standard iterative programming algorithm. Conductance instability is observed after t¼ 60 s.

Figure 3. Cumulative distributions of 425 devices in eight different
conductance levels read between t¼ 0 s (gray) and t¼ 8 s (light blue) after
standard iterative programming.
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states read shortly after standard iterative programming. A
spread of the conductance of the devices occurs rapidly after pro-
gramming, between t¼ 0 s (gray) and t¼ 8 s (light blue). This
effect occurs on the same time scale throughout the conductance
range, and it is most pronounced for high-conductance values.
Conductance spread then continues at a slower pace over longer
time scales. Finally, Figure 4 shows the mean and the coefficient
of variation (i.e., the ratio of the standard deviation to the mean)
values measured over 1 h on 4,096 devices, as well as a linear fit
of the curves, showing that the conductance values continue
spreading on a longer time scale. The lower the conductance
is, the higher the effect of conductance instability.

The literature about hafnium oxide-based resistive memories
suggests that the conductive filament may consist of oxygen
vacancies (Vo) and metal precipitates.[33] The movement of the

individual oxygen interstitial (Oi, scavenged by the reactive Ti
top electrode during the cell stack deposition and forming
process) and the random diffusion of the oxygen vacancies in
or out-of the conductive filament causes conductive filament
instability that is at the origin of the conductance spread.[17,34]

Using ab initio simulations, Clima et al.[14] also demonstrated
that the strongly relaxing conductance tails are due to the
unstable conducting filaments constituted by high-energy oxygen
vacancies that tend to relax in time toward lower-energy
positions.

To overcome the conductance instability effect, it is essential
to ensure that RRAM cells are programmed into states with sta-
ble filaments. Therefore, we proposed a dedicated programming
method (Figure 5a), which builds on the program-and-verify
technique, with the addition of a wait time of Δt after each

Figure 4. a) Mean value evolution over time of eight conductance distributions programmed with the standard iterative strategy. Experimental data and
linear fit. b) Coefficient of variation (i.e., the ratio of the standard deviation to the mean) evolution over time of eight conductance levels programmed with
the standard iterative strategy. Experimental data (symbols) and linear fit (dashed lines).

Figure 5. a) Dedicated smart programming flow. b) Conductance cumulative probability distributions for eight conductance levels programmed using the
new dedicated programming technique read after 60 s and 12 h. c) Effect of the waiting time, Δt, over the conductance distribution of one level after
dedicated smart programming. The plotted conductance distributions are read after 1 h.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2022, 2200145 2200145 (4 of 8) © 2022 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202200145 by C

ochrane France, W
iley O

nline L
ibrary on [19/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


SET operation and before the verify operation. This way cells that
suffered from conductance instability during the waiting period
are rescheduled to the next programming iteration, until they are
programmed in a state with less short-term instability. The
resulting cells are highly stable, even in the long term:
Figure 5b shows that the conductance distributions are stable
after 1min and 12 h, in strong contrast with the previous figures.

The impact of the choice of waiting time is shown in Figure 5c.
Only a minor change is observed between a wait time of 5 and
30 s. This result means that waiting 5 s is sufficient to predict the
long-term stability of a programmed state; therefore,Δt is fixed to
5 s in all subsequent experiments of the article.

Our technique increases the programming time of the array, due
to the addition of the wait time. It also requires, on average, three
times more program-and-verify iterations steps per device than the
conventional technique with no wait time (see Figure S2,
Supporting Information). Consequently, the programming energy
also increases by a factor of 3. Therefore, our technique is particu-
larly appropriate for implementing accelerators of neural network
inference. In this specific application, the programming operation
is performed only once, and the cells are subsequently only
subjected to reading operations. We validate the efficiency of our
technique on such an accelerator in the next section.

3. Experimental Demonstration of a Stable
RRAM-Based Neural Network

We now test our new dedicated programming technique on a
complete neural network, using the fully integrated RRAM
crossbar shown in Figure 6, capable of performing parallel
MAC operations (see Experimental Section for fabrication
details). This integrated system is fabricated in a 130 nm
CMOS commercial process, with RRAM integrated into the
CMOS BEOL. This system implements artificial neural networks
(ANNs) with analog weights and binary stochastic neurons. We
use this chip to perform a medical artificial intelligence task:
identifying the heart arrhythmia from ECG recordings (using
the ECG database of the study by Moody et al.[35], as shown
in Figure 7a). Our system uses a two-layer perceptron ANN
(see Experimental Section) and can differentiate between normal
heart beat and four different types of heart arrhythmia
(see Experimental Section).

Figure 8a shows the accuracy of the in-memory neural net-
work, right after it has been programmed, using the conventional
programming technique of Figure 2a. The measured results,
consistent with simulations, are presented for different experi-
ments with different number of conductance levels used in

Figure 6. a) Photograph of the fabricated chip. b) Detailed version of the crossbar circuit architecture. Independent shift register chains allow the control
of the bit lines, SLs, andWLs separately. Analog multiplexers and switches drive the voltage and current necessary to operate the array. c) A single synaptic
weight is encoded by the conductance difference between positive and negative sets of devices, located in adjacent SLs.

Figure 7. a) Example of an ECG signal. b) Conversion of the input analog signal into binary inputs. c) A two-layer perceptron architecture.
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RRAM. Beyond nine levels per cell (eight HCS levels and one
LCS), the inference accuracy reaches the maximum value of
95%. Therefore, we focus on crossbars programmed with nine
levels in the rest of the article. For applications requiring more
than 16 levels per memory cell (i.e., the limit of our technology,
see Figure 2), a technique called bit slicing can be adopted. The
key idea is to map a single logical row of the matrix across
multiple physical rows of the array. This technique enables
full-precision computation with limited precision memory
elements.[36]

However, as expected, when the devices have been
programmed conventionally, this accuracy is not maintained
long term. Figure 8b shows the accuracy drop over time due
to the conductance spread. This experiment was repeated on
three different crossbar arrays and shows consistent results: a
strong degradation of the accuracy of the neural network in a
few hours. The behavioral model (based on the linear fit of
Figure 4) accurately reproduces the experimental data.

In contrast, crossbar arrays programmed with our dedicated
programming technique maintain much more stable accuracy.
Figure 9, also based on the measurements on three different
arrays, shows that the dedicated programming strategy guaran-
tees an accuracy of 95% stable over two months. The dies were
stored at room temperature, unpackaged, under a normal

atmosphere over 2 months. This result presents for the first time
that an analog RRAM-based fabricated neural network showed
stable accuracy on a long-term period and therefore highlights
the potential of RRAM programmed appropriately for stable
operation.

We also estimated how the RRAM technology would behave in
larger neural networks. Figure 8c shows the simulated evolution
of the inference accuracy over time of a neural network on an
ECG dataset for neural networks with a hidden layer of 16,
64, and 256 neurons, without the dedicated programming
technique. The three structures require a crossbar array of 1,
4, and 16 kilo devices, respectively. The temporal conductance
instability strongly degrades the accuracy for the smaller neural
networks, whereas it has a much smaller effect for the larger neu-
ral networks.[32] This mechanism is related to the redundancy
inherent to large neural networks and the redundant synaptic
weights provide resilience to temporal changes in conductance.
This possibility of compensating the conductance spread effect
by increasing the size of the neural network is, however, not
satisfactory, as it requires larger memory arrays to solve a given
task. Second, it works well in a fully connected layer but would be
less effective in different neural networks architectures such as
convolution filters with less redundancy.

4. Conclusion

We have experimentally demonstrated a two-layer perceptron
inference based on an RRAM crossbar array with a new multi-
level programming algorithm to enable stable accuracy over time.
The new programming method is a “smart” programming
method that reduces conductance variability and stabilizes pro-
grammed levels up to more than 2 months. The two-layer per-
ceptron classifies ECG recording between normal heart beat
and four classes of heart arrhythmia with an accuracy of 95%,
when programming the RRAMs with nine levels per cell. This
result validates the potential of analog RRAM for in-memory
deep learning inference accelerator able to retain accuracy on
the long term without adjusting the RRAM material stack.

These results also highlight the complexity of the time scales
intrinsic to RRAM devices. Conventional programming techni-
ques can be very effective over short-term periods and can be
useful, for example, for learning accelerators where devices

Figure 8. a) Inference accuracy (simulated and experimental) on ECG dataset for different number of conductance levels per device. b) Inference accuracy
over time (simulated and experimental) on ECG dataset with nine conductance levels per device. Experiments have been performed on three different
RRAM crossbar dies. c) Simulated inference accuracy value for different sizes of the neural network (number of neurons in the hidden layer). The baseline
is calculated via software taking into account binary stochastic inputs and using 32 bits floating-point synaptic weights.

Figure 9. Experimental inference accuracy of ECG dataset using nine
conductance levels programmed with standard iterative strategy
(Figure 2a, blue) and the new dedicated smart programming flow
(Figure 5a, black) from three different RRAM crossbar dies.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2022, 2200145 2200145 (6 of 8) © 2022 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202200145 by C

ochrane France, W
iley O

nline L
ibrary on [19/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


get reprogrammed frequently. In contrast, stable long-term
inference requires specific efforts.

5. Experimental Section

Fabrication/Integration: The resistive RAM technology used in our
experiments was an oxide-based RRAM fully integrated in the BEOL of
a 130 nm commercial CMOS process (see Figure 1a). The thick oxide
nMOSFET select transistor was 1 μm wide and a 0.5 μm length. The
RRAM active layer consisted of HfO2, deposited at 300 °C by atomic layer
deposition with HfCl4 and H2 precursors in ASM polygon pulsar chamber.
The metal TiN bottom and Ti top electrodes were deposited by physical
vapor deposition. The HfO2 and Ti layers were 5 nm thick and had a
300 nm diameter mesa structure.

Device and Circuit Measurements: For programming and reading the
RRAM devices, voltage pulses were generated off-chip by an RIFLE
NplusT engineering test system, which incorporates a digital sequencer,
100MHz arbitrary waveform generators, 70 Msample/s cell current mea-
surement capability, and a Cþþ programmable computer. The computer
configured pulses applied by the arbitrary waveform generator to the
RRAM cells. All of these signals were interfaced to our 200mm wafer
through a 25-pin probe card, which contacted 25 metal pads integrated
on top of the BEOL of the wafer. Using this setup, the computer was
therefore able to program the conductance states of devices integrated
in the array, read the resulting states, and then, based on these results,
reprogram the devices in the array. In this fashion, we could implement the
proposed program and verify algorithms.

In-Memory Computing Chip: Two different versions of fabricated RRAM
memory arrays were used in the presentation of this article. These two
arrays featured different sizes and routing systems. In both arrays, each
resistive memory was connected to the drain terminal of a transistor, in a
one-transistor–one-resistor (1T1R) configuration. The transistor, used as a
selector, was essential to control the programming current allowing mul-
tilevel programming of the RRAM devices. The first (used in Figure 1, 2)
was a 16 384 device array of 1T1R structures, only individually addressable,
suitable for extensive statistical analysis (Section 2 of the article). The sec-
ond one was smaller (1,024 1T1R structures, arranged in a 32 row and 32
column crossbar structure) but more flexible; this array enabled the selec-
tion of multiple memory points along the selected word line (WL), allowing
for in-memory computing (Section 3 of the article). The current that flowed
through each source line (SL) was the dot product of the input voltage
vector (V) applied on the bit lines and the corresponding column memory
conductance vector (g). The fabricated circuit (Figure 6a) details are
shown in Figure 6b. Digital drivers were used to select single or multiple
cells in parallel controlling the transistors WL. The flexibility of this struc-
ture allowed addressing the bit lines, SLs, and WLs independently using
digital registers (scan chains). Each device was programmed sequentially
through analog multiplexers designed to drive the programming signals
with minimal voltage drop.

The correspondence between synaptic weights and stored conductance
is shown in Figure 6c. A single synaptic weight (G) was encoded by the
conductance difference between positive (Gþ) and negative (G�) sets of
devices, located in adjacent SLs. The input current of each output neuron
was the difference between the current through the positive and the
negative SLs.

A single voltage level was applied to the BLs; therefore, the activation
function of the output neurons corresponded to a current comparison
between the positive and the negative SLs. In our test system, this com-
parison was performed externally to the integrated circuit; in a commercial
system, it could easily be implemented with a current-sensing circuit such
as the one presented in other studies[37,38] between two branches.

ECG Task: The ECG recording was cut in series of 700ms used to
extract 32 features through a fast-Fourier transform. The 32 features were
the input of the ANN. As the digital drivers generated only one read voltage
level, each extracted feature was rescaled on a value between 0 and 1 and
used as a probability. This probability was transformed into N binarized

stochastic inputs Vn that were applied sequentially to the input of the first
layer. The network computed the dot-product operations through the two
layers, and the output of the output neurons was summed up over the
number N of stochastic versions of the input Vn (Figure 7b).

The implemented perceptron featured 16 hidden neurons in the first
layer and five output neurons, corresponding to the five different labels,
in the second layer (Figure 7c). Our crossbar array could take 32 inputs
and produce 32 outputs at a given time. To implement the two layers per-
ceptron with the single RRAM crossbar array, two arrays were required.
The input-to-first layer matrix multiplication was calculated using the
one crossbar array. The 16 binary outputs were recorded and used as
an input for the first-to-second layer. The matrix multiplications were
calculated using 10 out of 32 rows. The 10 rows were arranged in pairs
to provide five outputs.

Our hardware targeted solely inference; training was performed in soft-
ware, with binarized stochastic input features presented instead of analog
values.[39] Moreover, to improve the inference robustness to the variability
of the RRAM technology and the analog circuits, we artificially added noise
to each neuron during the training process.[40] Training was performed
using 32 bits floating-point representation. The procedure was completed
by transferring the learned weights to the RRAM array: the learned weights
were quantized to 3 bit values and converted into the RRAM conductance
levels for inference.
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