Slow Manifold of a Neuronal Bursting Model

Abstract : Comparing neuronal bursting models (NBM) with slow-fast autonomous dynamical systems (S-FADS), it appears that the specific features of a (NBM) do not allow a determination of the analytical slow manifold equation with the singular approximation method. So, a new approach based on Differential Geometry, generally used for (S-FADS), is proposed. Adapted to (NBM), this new method provides three equivalent manners of determination of the analytical slow manifold equation. Application is made for the three-variables model of neuronal bursting elaborated by Hindmarsh and Rose which is one of the most used mathematical representation of the widespread phenomenon of oscillatory burst discharges that occur in real neuronal cells.
Type de document :
Chapitre d'ouvrage
M.A. Aziz-Alaoui & C. Bertelle. Emergent Properties in Natural and Artificial Dynamical Systems, Springer Berlin Heidelberg, pp.119-128, 2006, Understanding Complex Systems, 978-3-540-34822-1. 〈10.1007/3-540-34824-7_6〉
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal-univ-tln.archives-ouvertes.fr/hal-01056181
Contributeur : Jean-Marc Ginoux <>
Soumis le : dimanche 17 août 2014 - 15:37:25
Dernière modification le : lundi 21 mars 2016 - 17:36:06
Document(s) archivé(s) le : mardi 11 avril 2017 - 19:55:30

Fichiers

Ginoux-Rossetto.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jean-Marc Ginoux, Bruno Rossetto. Slow Manifold of a Neuronal Bursting Model. M.A. Aziz-Alaoui & C. Bertelle. Emergent Properties in Natural and Artificial Dynamical Systems, Springer Berlin Heidelberg, pp.119-128, 2006, Understanding Complex Systems, 978-3-540-34822-1. 〈10.1007/3-540-34824-7_6〉. 〈hal-01056181〉

Partager

Métriques

Consultations de la notice

210

Téléchargements de fichiers

161