Invariant Manifolds of Complex Systems

Abstract : The aim of this work is to establish the existence of invariant manifolds in complex systems. Considering trajectory curves integral of multiple time scales dynamical systems of dimension two and three (predator-prey models, neuronal bursting models) it is shown that there exists in the phase space a curve (resp. a surface) which is invariant with respect to the flow of such systems. These invariant manifolds are playing a very important role in the stability of complex systems in the sense that they are "restoring" the determinism of trajectory curves.
Type de document :
Chapitre d'ouvrage
Cyrille Bertelle, Gérard H.E. Duchamp, Hakima Kadri-Dahmani. Complex Systems and Self-organization Modelling, Understanding Complex System, Springer Berlin Heidelberg, pp.41-49, 2009, Understanding Complex Systems, 978-3-540-88072-1. 〈10.1007/978-3-540-88073-8_4〉
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal-univ-tln.archives-ouvertes.fr/hal-01056170
Contributeur : Jean-Marc Ginoux <>
Soumis le : lundi 18 août 2014 - 08:02:29
Dernière modification le : jeudi 15 mars 2018 - 16:56:04
Document(s) archivé(s) le : mardi 11 avril 2017 - 20:09:31

Fichiers

Ginoux-Rossetto.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jean-Marc Ginoux, Bruno Rossetto. Invariant Manifolds of Complex Systems. Cyrille Bertelle, Gérard H.E. Duchamp, Hakima Kadri-Dahmani. Complex Systems and Self-organization Modelling, Understanding Complex System, Springer Berlin Heidelberg, pp.41-49, 2009, Understanding Complex Systems, 978-3-540-88072-1. 〈10.1007/978-3-540-88073-8_4〉. 〈hal-01056170v2〉

Partager

Métriques

Consultations de la notice

161

Téléchargements de fichiers

95